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Graph Data is Everywhere
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Graph Data in Many Forms

| Static graph |

| Dynamic / temporal / time-evolving graph |
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Graph Neural Network (GNN): Key Idea
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" f('u'} —Rd ¢ _m" :’35 P —— prediction, gquestion answering)

Representation learning or embedding

Learning could be end-to-end A
* End-to-end learning — E}%g E#.
* Task-independent / task-dependent learning.

* Can capture graph structure and node, edge features.

A A
| Graph Convolutional Neural Network (GCN) | A< com age
* Massage passing to use aggregation and
combine functions repeated several times.
2E [€E—
1 1 Input h A
HED = o072, A.D 2. HO .w®) nput grap

Technique in GCN

T — 0) = Input Node Feat
A=A+ IN H X nputNode Features Representation Learning on Networks (WWW Tutorial, 2018)
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Graph Neural Network (GNN):
Downstream Tasks
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| Drug design |
* predicting missing links between drug and disease.

A Comprehensive Survey on
Graph Neural Networks. IEEE
Trans. Neural Networks
Learn. Syst. 2021.
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Synergy between Graph Data Management
and Graph Machine Learning

el da.ta Graph GNN Downstream ST

construction ) .. Explainability
) embedding training tasks

and cleaning

Graph machine learning and data science pipeline
@ How graph machine learning and graph data management benefit each other?

@ Application of graph data management in graph machine learning

- Scalable Graph Embedding
[PVLDB’23] Distributed Graph Embedding with Information-Oriented Random Walks

- Dynamic updates in knowledge graph embedding
[KBS’22] Efficiently Embedding Dynamic Knowledge Graphs

- GNN Explainability
[SIGMOD’24] View-based Explanations for Graph Neural Networks
[ICDE’24] Generating Robust Counterfactual Witnesses for Graph Neural Networks

@ Application of graph machine learning in graph data management

- Knowledge graph question answering
[ICDE’22] Aggregate Queries on Knowledge Graphs: Fast Approximation with Semantic-aware Sampling
[ICDE’20] Semantic Guided and Response Times Bounded Top-k Similarity Search over Knowledge Graphs




Our Work in Graph Data
Management and Machine Learning

v Big-Graphs: Querying, Mining, Streaming, Uncertainty, Systems, and Beyond

v User-friendly, efficient, and approximate querying and pattern mining using scalable algorithms,

machine learning techniques, and distributed systems \/
( \ ( \ ﬂ‘dovel Pattern Mining\ mfnrmation-centric \ Graph Neural
Knowledge-Graph Search Reliability and e L Network
[SIGMOD 11 [SIGMOD 10, Distributed Graph ork
B Shortest Path Embedding Explainability
Graph Anomaly ’ )
Detection Complementary SIGMOD 24,
Graph Partitioning
Graph-based Entity [SIGMOD 12] Graph Machine Learning
By Resolution
Graph Query-By-Example Influence Graph Storage /F;elational Data \
Maximization and Decoupling and Smart [SIGMOD 14]
Graph Stream Embedding Graph Summary, Query Routing Stream Data
Summarization and GMOD 18 Core Decomposition, [SIGMOD 16]
Query o ) Multi-layer graph, Blockchain Network
and Hypergraph Vertex-Centric Graph
Spatial/ Road Network Densest subgraph SIGMOD 19 Processing
Querv SIGMOD 2 y \ ) \ _/ \ ) Crowd-Sourcing
i ' C lex Graph Mini istri
Scalable, Approxrlmate Uncertain llSraph omplex Grapn Mining Distributed Graph Other Big Data Processing
Graph Querying Processing Systems
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Graph Neural Network (GNN):
Explainability

* Explain the results of high-quality GNNs.

* [Instance-level] Understand which aspects of the input data drive the decisions of the GNN — discover critical
nodes, edges, subgraphs, and their features that are responsible for GNN outcomes.

* [Model-level] Insight on how GNNs work — discover what input subgraph patterns lead to a certain prediction.

Importance

* Desirable to understand and explain the workings and results of black-box GNNs Stakeholders

— bridge domain knowledge with GNN predictions, human-Al collaboration. / \
» Safety and well-being (e.g., autonomous car, Al in healthcare) — trust in deep End users, domain experts,
learning models. decision makers, policy

makers, regulatory
agencies, researchers, data
scientists, and engineers

* Understand bias in machine learning (ML) algorithms — ML algorithms can amplify
bias, model debugging.

* Robustness against adversarial examples — improve quality of GNN outputs.

* Legal requirements, e.g., GDPR — algorithms to explain their outputs.

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara) 9/40



Challenges with GNN Explanations

* Many definitions, motivations, and requirements for explainability.

— trust, causality, transferability, informativeness, fair and ethical decision making, model debugging,
recourse, mental model comparison, context-dependent, low-level mechanistic understanding of models,
high-level human understanding, what makes users confident about the model.

e Comparing explanations is hard!

* Several quantitative and qualitative evaluation metrics or methods.

— Quantitative: faithfulness (fidelity+, fidelity-), sparsity, contrastivity, accuracy, stability.
— Qualitative: application-grounded, human-grounded, and functionally-grounded evaluation.
* Difficult to obtain ground-truth.

» Other issues: Evaluation via occlusion creates data outside training distribution, bias terms,
redundant evidence, trivial correct explanations, weak GNN model, misaligned GNN architecture,
problems due to graph data vs. grid data.

» Capture interplay of graph structure and features in GNN’s decision making.

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara) 10/40



Challenges with GNN Explanations

problems d ~data vs. grid data.

» Capture interplay of graph structure and features in GNN’s decision making.

Arijit Khan ( AAU Denmark €< NTU Singapore < ETH Zurich €< UC Santa Barbara) 1 1/40



Graph Neural Network (GNN)
Explainability: Our Work

@ Benchmarking of GNN explainability methods
(IEEE BigData 2020, IEEE DSAA 2023 Tutorial)

@ GNN explanation usability @ GNN explanation for model

(SIGMOD 2024) debugging
(under submission)

® GNN explanation robustness @ GNN explanation skyline /
v (ICDE 2024) pareto optimality

(under submission)

@ GNN counterfactual evidence
v (under submission)
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GNN Explanation Usability: Graph View-
‘based Explanation [siGvoD 2024]

e 1]
S

Tingyang Chen, Zhejiang University
Dazhuo Qiu, Aalborg University

Patterns Patterns

Explanation subgraphs (Mutagens) Explanation subgraphs (Nonmutagens)

Gsl Gs2 :}? Gs3 Gs4
Chemical Compound Database "Mutagens"” "Nonmutagens"

cOO@NQHE@SQC@F@

GNN-based drug classification, with graph patterns and induced subgraphs that help
understand the results: ““which toxicophore occurs in mutagens?”’ 13/40




GNN Explanation Usability: Graph View-
based Explanation

[Challenges with Existing Approaches }

Oversized explanation: Existing methods generate large explanation subgraphs.

Lack of meaningful explanations for domain experts: Due the oversized explanations
containing irrelevant/ repeated structures, it is hard to identify meaningful structures. Not
qgueryable, hence not easy to access and inspect with domain knowledge.

Not configurable explanation based on user setting: Only explaining one class may omit the
relevant information between classes.

Arijit Khan ( AAU Denmark €< NTU Singapore < ETH Zurich €< UC Santa Barbara) 14/40



GNN Explanation Usability: Graph View-
based Explanation [siGiviop 2024]

GNNExplainer GStarX
SubgraphX GVEX [ours]

iR

Ps

oo d o

GNN-based drug classification

A Configuration constraints B Configuration constraints
100% | 0% S0% | 50%

oFifedsf |

C Configuration constraints
0% | 100%

e

Pg1 a P@A P?l.\a P?QM

Online Discussion Hybrid View

"SR A

Question-Answer

GNN-based social analysis: REDDIT-
BINARY social network dataset,

two classes - online-discussion
threads and question-answer
threads. Three different

configuration scenarios.



GNN Explanation Usability: Graph View-
based Explanation

GNNExplainer GStarX

[Two-tier Explanation ]
Lower-tier: An explanation subgraph
that ensures same prediction (factual)

SubgraphX GVEX [ours] and its removal changes G’s prediction

label (counterfactual).
Higher-tier: A set of graph patterns
that summarizes the explanation

Ps

oquo & . subgraphs with coverage guarantee.
GNN-based drug classification
A Configuration constraints B Configuration constraints C Configuration constraints
100% | 0% 50% | 30% 0% | 100%
O%%Gg@ O%%(?g) %gi}g? ﬁj GNN-based social analysis: REDDIT-
BINARY social network dataset,

two classes - online-discussion
Ps1 a Pg) .ﬂ. H.\:(z P7 PSM Pg) & threads and question-answer
w threads. Three different

Online Discussion Hybrid View Question-Answer confi guration scenarios.




GNN Explanation Usability: Graph View-
based Explanation

Explanation Subgraphs: Given a GNN M and a single graph G with label M(G) = [, an
explanation subgraph G! of G satisfies:

M(G) = M(G!) = land M(G\G}) #

Explanation Views: Given a graph database G, a classifier M, and label [, an explanation view
consists of (1)G., a set of explanation subgraphs for the label group G! and (2)P!, a set of
patterns that cover the nodes of the explanation subgraphs.

@oONOCc@H
Explanation subgraphs Gss and Gs6
R °

/ - Gss Gss An explanation view for a

\ JO— . single class label: explanation
3¢ ¥ subgraphs and patterns

G > -

EEY e

Gs

Explanation View
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GNN Explanation Usability: Graph View-
based Explanation

Q@oO¥Oc@®=

Explanation subgraphs Gss and Gsé

o«%ﬁ~ . / ” ﬁﬂfz § An explanation view for a single class label:
o @ N ‘ e explanation subgraphs and patterns
< J fy@ Pslo% P, {} P O—§

Explanation View

[Quality of Explanation Views }

Explainability: An explanation view has better explainability if its explanation
subgraphs involve more nodes with features that can maximize their influence

via a random walk-based message passing process of GNN.
RFSUm feature
1y _ 'si) ¥ YD Vsi influence
fGh)= > 7

GSEE g,i

neighbor

Coverage: The set of explanation subgraphs G! contains total n nodes, diversity

where n € [b,, u)], specified by the coverage constraint for label group G'.
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GNN Explanation Usability: Graph View-
based Explanation

[Explanation View Generation Problem }

PROBLEM 1. Given a graph database G, a set of interested labels
L s.t. |L| = t, a GNN M, and a configuration C, the explanation

view generation problem, denoted as EVG, is to compute a set of
graph views Gy = {QE{,, o gf{,}. such that (i € [1,t]):

e Fach graph view gf;, = (‘P‘rf, gﬁf) € G is an explanation

view of G for Mw.rt. l; € L;
e Fach in, properly covers the label group Gli: and
e G maximizes an aggregated explainability, i.e.,
li
G = arg max Z f(Gy)
[
Q@?EQ"V

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara) 19/40



GNN Explanation Usability: Graph View-
based Explanation

[Explanation View Generation Problem: Hardness and Properties J

View Verification
Given a graph database G, configuration C, and a two-tier explanation structure
(P, Gy), the view verification problem is NP-complete when the GNN is fixed.

Explanation View Generation (EVG) Problem
For a fixed GNN, EVG is (1) ZZZ, —complete, and (2) remains NP-hard even when §
has no edges.

Monotone Submodularity
Given G, L, C and a fixed GNN, f (G} ) is a monotone submodular function of Vs.

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara) 20/40



GNN Explanation Usability: Graph View-
based Explanation

[Approximation Algorithms and Quality Guarantees }

OON C@H

Explain Phase Summarize Phase

Greedy, Approximation Algorithm: Given a e | o |

configuration C, graph database G, and a k-layer 3 Oﬁ - A ﬁ

GNN over label set L, there is a = -approximate e o . PoAD
. . 2 . . ~ e w; <-> Expl:;];ﬂtionlj\s"]iew

algorithm for generating explanation views. E— 3

i i i : : Greedy, approximation algorithm
Streaming Algorithm: Given a configuration C, ¥, approximation algori

OOO\IOCOH

graph database G, and a k-layer GNN, there is an
online algorithm that maintains explanation Dﬁ “}iﬁ%\] %ﬁ w
: : 1 N
views with a a - -approximation. £ cfb f e
80000 00080
W 2 0% ogooooo
Parallelization: Both algorithms can be parallelized. s

B 0. bp o

Gs11

{}o%fgoa&,

Py Py Pys

Streaming algorithm
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GNN Explanation Usability: Graph View-
based Explanation

| Demonstration UI with Vue.js |
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The architecture of the GVEX system

A screenshot of the GVEX frontend
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https://youtu.be/q9d7ldulIuQ

GNN Explanation Usability: Graph View-
based Explanation

AG —— SG —=— GE SX GX — GCF
[ours] [ours] [NeurlPS19] [ICML21] [NeurlPS22] [WSDM23]

0.4 I 0.20
203 OIS _ .
=02 S 0.101
4= =
iz 0.1 = 0.051

0.0 L 0.00 {pg——f—F———1

10 20 30 40 50 10 20 30 40 50
u, u,

Fidelity+ quantifies the deviations caused by removing the explanation substructure from
the input graph. Higher is better.

Fidelity- measures how close the prediction results of the explanation substructures are
to the original inputs. Lower is better.

REDDIT-BINARY dataset.
23/40
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GNN Explanation Usability: Graph View-

based Explanation
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GNN Explanation Robustness

Dazhuo Qiu, Aalborg University

Mengying Wang, Case Western Reserve University

G1l: Left-Bold nodes and edges
indicate a counterfactual. Middle-
Red bold nodes and edges indicate
a new counterfactual after deleting
dotted edges. Right-A counterfactual
robust to graph edits.

(Factual) Witness: A subgraph G,, that satisfies: M(v,G) = M(v, G,,) =1
Counterfactual Witness: A witness that satisfies: M (v, G\G,,) # [

k - Robust Counterfactual Witness: By removing k edges from input graph G, G,, remains a
counterfactual witness.

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara) 25/40



GNN Explanation Robustness

Example - “Vulnerable Zone” in Cyber Networks

File 1 File 2
/home File 3
2
/root/ breach.sh *

\ ./.ssh/id_rsa /etc/sudoers

O Files [] Processes

Accessible Routes = —» Historical Attacks

GNN-based Security System:

Detection: Train GNN based on historical
attacks to classify files’ vulnerability.

Protection. Enhanced  security for
vulnerable files (colored orange).

Email/invoice.txt ¥ Filel
----- o[osene |- » o -3

v v _n

Jroot/ breach.sh *
\ ./.sshfid_rsa Ta /etc/sudoers

[] Processes ---» Deceptive attacks —p True attack

__________________________________________________________________________________________________________________

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara)

== Multi-Phase Cyber Attack Strategy:

How can we identify a "Vulnerable Zone" within cyber networks where, if protected, GNN
predictions remain solid, even if other parts of the network are disturbed by deceptive attacks?

Phase 1: Deception Attacks: Conduct
deceptive but harmless attacks to Induce
false invulnerable classification on target.

Phase 2: True Attack: attack by exploiting
reduced defenses on target.

26/40



GNN Explanation Robustness

[Robust Explanation Generation Problem: Hardness and Solution }

e Verification Problem: Given Gs, decide if Gs is a k-
RCW for a set of test nodes Vi, w.r.t a model M.

e Factual Explanation (Withess):
o M(v,G)=M(v, Gs)=1

o  Withess verification ¢¢ PTIME.

e Counterfactual Explanation (CW):
o M, G)#M(v, G\Gs) # I

o CW verification ¢¢» PTIME.

o k-RCW verification ¢¢ NP-hard.
e RobustExplanation (k-RCW):
o Gs remains consistent under disturbance.

e Generation Problem: Given a graph G and Vt,
compute a k-RCW if exists.

We are the first to consider o k-RCW generation in general ¢¢ co-NP-hard
all three criterial &8 -

o under (k, b)-disturbances ¢ PTIME.

_____________________________________________________________________________________________________________________________

* We propose effective and efficient solution under (k, b)-disturbance and APPNP GNN. k: global budget, b:
' local budget. APPNP GNN (ICLR 2019). :

* Parallelization scheme with graph partition.

Arijit Khan ( AAU Denmark €< NTU Singapore < ETH Zurich €< UC Santa Barbara) 27/40



GNN Explanation Robustness

Experiment Results: Effectiveness

~ Methods Counterfactual Factual Robustness
CF-GNNExp (AISTATS 2022) v
CF? (WWW 2022) v v
RoboGExp v v v
—8— RoboGExp —k— CF2 —»— CF-GNNExplainer
1.0 0.8 1
A 0-81 /—’__—“
"'g 0.6 1 /"/ ¢ 0.6 ///
E >4 % 0.4
g 0.2 1 //’_—.
0.0 *— T T : - 0.2 T T T T
4 8 12 16 20 4 8 12 16 20
k k

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara)
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GNN Explanation Robustness [icDE 2024]

Experiment Results: Efficiency & Scalability

~ Methods Counterfactual Factual Robustness
CF-GNNExp (AISTATS 2022) v
CF? (WWW 2022) v v
RoboGExp v v v

1 23 0d 30000
1 -4 RoboGExp A68,
1044 [ CF-GNNExplainer L/
12 cr2 4797.56 24600 A
] 2811.33
@ 10 2\ 19200 -
: X
223.00 13800 -
= 71 X
107 5 4.0 6.1
] 9,6 2N 8400 1
] l1r6.8\5 ><
101 E 3000 L T T T T T
E N /] —— Y\. 2 4 6 8 10
BAHouse  CiteSeer PPI # threads
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=a-8 GNN Counterfactual Evidence [under submission]

-~
‘ % = Dazhuo Qiu, Aalborg University

uld7 | Male | 30-40 1224 -3k udE2 Female 30-40 24-36 2-3k
udf | Male | 2040 3648 2k-2k uiss |Female| 30-40 2428 1k-2k
4 | Male | 40-50 1224 2k-3k u52d | Male | 40-50 1224 1k-2k
udf | Male | 2040 1224 Ik-2k ui | Male | 3040 3643 2k-3k
ulid [Female 30-40 3643 4k-Zk uiTS |[Female| 12-30 24-28 1k-2k

Figure 1: Two customers w97 and u862 from the German
Credit dataset [3] are shown at the centers. We present their
1-hop neighborhood structures, along with feature values
for all these nodes. Three features, namely age, loan dura-
tion, and loan amount are relevant w.r.t. node classification,
i.e., whether their loans would be approved or not; whereas
gender is a sensitive feature. Notice that u97 and u862 share
similar node feature values for age, loan duration, and loan
amount. They also share similar 1-hop neighborhood struc-
tures with only one edge difference. Notably, u97 and u862
have different genders. A pre-trained GNN predicts different
classes for 497 and u862, making each of them a counterfac-
tual evidence of the other.

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara)
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Figure 1: Two customers w97 and u862 from the German
Credit dataset [3] are shown at the centers. We present their
1-hop neighborhood structures, along with feature values
for all these nodes. Three features, namely age, loan dura-
tion, and loan amount are relevant w.r.t. node classification,
i.e., whether their loans would be approved or not; whereas
gender is a sensitive feature. Notice that u97 and u862 share
similar node feature values for age, loan duration, and loan
amount. They also share similar 1-hop neighborhood struc-
tures with only one edge difference. Notably, u97 and u862
have different genders. A pre-trained GNN predicts different
classes for 497 and u862, making each of them a counterfac-
tual evidence of the other.
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S8 8 0oohuo Qiu, Aalborg University

Counterfactual evidence for
node classification

PROBLEM  (Topr-1 LocAL COUNTERFACTUAL EVIDENCE). Given a
query node v € Viest, the top-1 counterfactual evidence, LC Eopt(v)
is a node u € Viesy that 1) has a different predicted label w.r.t. v; and

2) attains the highest similarity score KS(v, u) compared to all other
nodes in the test set.

LCEopt(v) = arg max

uEV;esr, M(ﬂ)-‘#M(H)

KS(ov, u)
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Figure 1: Two customers w97 and u862 from the German
Credit dataset [3] are shown at the centers. We present their
1-hop neighborhood structures, along with feature values
for all these nodes. Three features, namely age, loan dura-
tion, and loan amount are relevant w.r.t. node classification,
i.e., whether their loans would be approved or not; whereas
gender is a sensitive feature. Notice that u97 and u862 share
similar node feature values for age, loan duration, and loan
amount. They also share similar 1-hop neighborhood struc-
tures with only one edge difference. Notably, u97 and u862
have different genders. A pre-trained GNN predicts different
classes for 497 and u862, making each of them a counterfac-
tual evidence of the other.

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara)

=iy GNN Counterfactual Evidence

Counterfactual evidence for
node classification

PROBLEM  (Topr-1 LocAL COUNTERFACTUAL EVIDENCE). Given a
query node v € Viest, the top-1 counterfactual evidence, LC Eopt(v)
is a node u € Viesy that 1) has a different predicted label w.r.t. v; and
2) attains the highest similarity score KS(v, u) compared to all other
nodes in the test set.

LCEopt(v) = arg max KS(ov, u)

uEV;esr, M(Q)Q‘EM(HJ

_________________________________________________________________

*We convert the counterfactual evidence finding
problem to nearest neighbor search problem over the

vector space.

| « We demonstrate applications of our problem in:
- GNN Explainability,
| - Revealing Unfairness of GNNs,
. - Verifying Prediction Errors,
' - Fine-tuning with Counterfactual Evidences. |



GNN Counterfactual Evidence [under submission]
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(c) FairGNN, Class = 1
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(b) GCN,Class =0
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(d) FairGNN,Class =0

Loan Dataset: Feature

importance across
different GNN classifiers
and classes. Class label
=1 indicates predicted
good customers by

the GNN whose loans can
be approved. Our
findings reveal that
"Gender = Male" and
"Age = 30-40" are two
critical factors based

on which the classic GCN
could predict a loan
approval, whereas the
gender bias is reduced
when using the FairGNN
(WSDM 2021).
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Conclusion - GNN Explanability

@ User-friendly, interactive, configurable, and robust explanation for graph
neural networks (GNNs).

@ Synergy between graph data management (e.g., graph view, usability,
robustness, parallelization, fairness, vector search) and graph machine
learning (e.g., GNN explanation).

[ Future Work }

@ Diversified GNN Explanations with Skylines/ Pareto Optimality
@ GNN Explanations for Model Slicing and Debugging

@ GNN Explanations beyond Classification (e.g., Graph Alignment)

Arijit Khan ( AAU Denmark €< NTU Singapore < ETH Zurich €< UC Santa Barbara) 34/40



Our Work in Graph Data
Management and Machine Learning

v Big-Graphs: Querying, Mining, Streaming, Uncertainty, Systems, and Beyond

v User-friendly, efficient, and approximate querying and pattern mining using scalable algorithms,
machine learning techniques, and distributed systems

(Knowledge-Graph Sea rch\

[SIGMOD 11

Graph Query-By-Example

Graph Stream
Summarization and
Query

Spatial/ Road Network

Reliahility and
Shortest Path

Influence
Maximization and
Embedding

SIGMOD 18

Densest subgraph

Querv SIGMOD 2 y

Scalable, Approximate
Graph Querying

.

~N

ﬂ\lovel Pattern Mining\

J

Uncertain Graph
Processing

[SIGMOD 10,

Graph Anomaly
Detection

Graph-based Entity
Resolution

Graph Summary,
Core Decomposition,
Multi-layer graph,
and Hypergraph
SIGMOD 19

Distributed Graph
Embedding

Complementary
Graph Partitioning
[SIGMOD 12]

Graph Storage

Query Routing

Vertex-Centric Graph
Processing

\2 J

Complex Graph Mining

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara)

\J

mfnrmation-ce ntric \

Decoupling and Smart

J

Distributed Graph
Systems

Graph Neural
Network
Explainability

SIGMOD 24,

Graph Machine Learning

~N

(l;elational Data
[SIGMOD 14]

Stream Data
[SIGMOD 16]

Blockchain Network

Crowd-Sourcing

\U J

Other Big Data Processing

35/40



“

“

@ LLM Logic Consistency

Approximate (Semantic) Subgraph Search for
Knowledge Graphs Querying

NESS (SIGMOD 2011),
NEMA (PVLDB 2013)

Neighborhood-based Fast,
Approximate Graph Search

Graph Query-By-Example
[User-Friendliness]

GQBE (ICDE 2014, TKDE gy
2015, ICDE 2016)

SGQ (ICDE 2020), >

AGQ (ICDE 2022, CIKM 2022)

DKGE (KBS 2022) >

Semantic-Guided and Response-
Time Bounded Graph Search,

Aggreqgate Queries on KG
Embedding

Dynamic KG Embedding

. LLM + KG
wnder submission)  mmp NN



Subgraph Search: Market manipulators in
LunaTerra StableCoin Collapse

ATNNTO———E Motif 1 Motif 4 Motif 5 @

cnasiin

s

Five three-node motifs exhibiting buy and sell
behaviors. Nodes labeled C denote the center where
a center with an in-degree = 2 indicates buy behavior
and an outdegree = 2 indicates sell behavior.

Ethernet transaction network

Address/Motif Center Cy Cy Csqa Csp Cs Ci

Celsius - 81.2 - 78.9 - -
hs0327.th 882 670 962 697 86 - Influential addresses found by our method that
Smart LP: 0x413 - 68.4 - - 95.1 - .
Token Millionaire 1 846 897 - 86.2 742 839 match with ground truth
Token Millionaire 2 69.7 99.5 - 98.7 989 376
masknft.eth 90.9  90.7 - 82.1 933 922
Heavy Dex Trader 713 96.2 - - 81.2 - . . .
Oapital 9L6 789 605 585 TL8 925 Frontiers in Blockchain (2024)

HodInaut 309 989 - 906 994 - 37/40



Takeaway

el da.ta Graph GNN Downstream s

construction : .. Explainability
) embedding training tasks

and cleaning

Graph machine learning and data science pipeline

@ Synergy between graph data management and graph machine learning

4 )

Graph Machine Learning for Graph Data Management:
-  Embedding based question answering

\_ W,
\
Graph Data Management for Graph Machine Learning:
/- GNN Explanation: usability and robustness
- Scalable distributed graph embedding systems )
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Future Direction: LLM+KG

* Retrieval-augmented generation (RAG) to use KG
context in order to improve a large language model
(LLM)’s accuracy and consistency.

* GraphRAG:
Graph-based retrieval-
augmented generation

* Complex Fact Checking
* Code Explanation
* Schema Matching

Graph machine learning

\Explainability of LLM

Graph data management + A

J

FACT

BFS on FB15K

Thomas Mann | award | Mobel Prize in

Literature starting from
MNobel Frize in Literature

Prompt text
./- -

Consider the context as a set of triplets where entries are separated
by '|' symbol. Answer guestion according to the context ICONTEXT, Do
not add additional tewt. Is the following triplet FACTUALLY CORRECT
where entries are separated by '|* symbol? Answer with Yes or No
$FACT.

\ J

is fed to

»

expected response
0 LLama

Llama responze

Neighborhood graph

..........
-t b

S——r—
r Y etz
Whars P
kM —
H ¥, Chasier
| ‘
| et an
P |
i S
e Bk . e
-—
CONTEXT

Mobel Prize in Literature | award winner | Doris Lessing
Thomas Mann | influenced | Franz Kafka
Mobel Prize in Literature | award winner | Henri Bergson

LLM-based Query Processing with KG Context

Arijit Khan ( AAU Denmark € NTU Singapore < ETH Zurich € UC Santa Barbara)
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