User-friendly Explanations for Graph Neural Networks

Arijit Khan

Department of Computer Science Aalborg University, Denmark arijitk@cs.aau.dk

A Brief History in Time ...

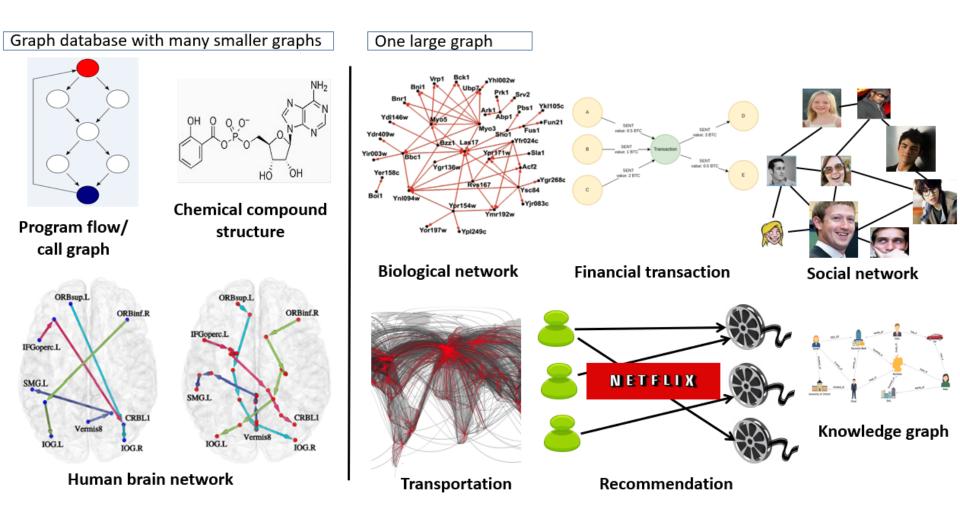
- University of California, Santa Barbara (UCSB)
 - PhD (2008-2013)

Internship at IBM TJ Watson, NY (2010)
Internship at Yahoo! Labs, Barcelona (2012)

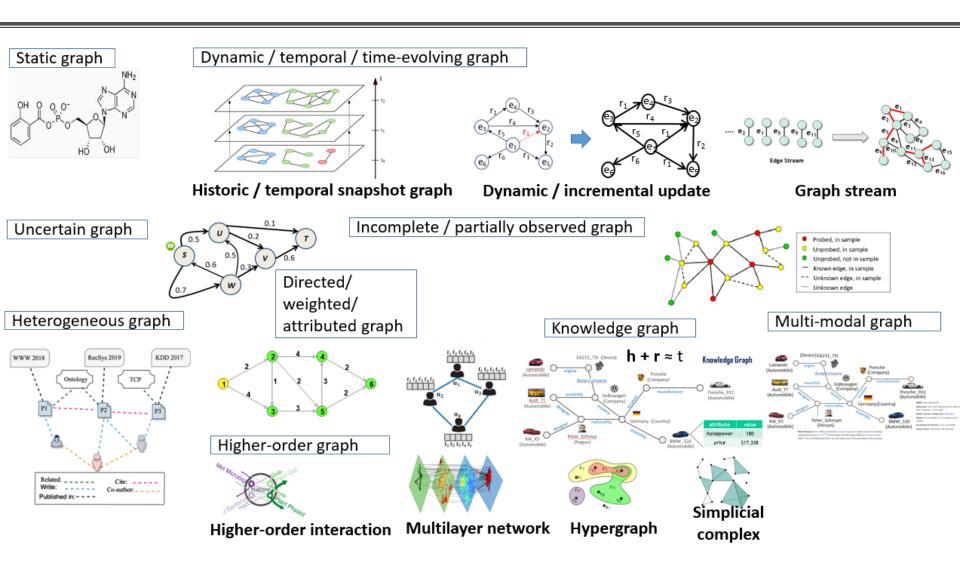
- ETH Zurich, Switzerland
 - Post-doc (2014-2015)
- Nanyang Technological University (NTU), Singapore
 - Assistant Professor (2016-2022)
- Aalborg University
 - Associate Professor (2022-now)

AALBORG UNIVERSITY

Graph Data is Everywhere

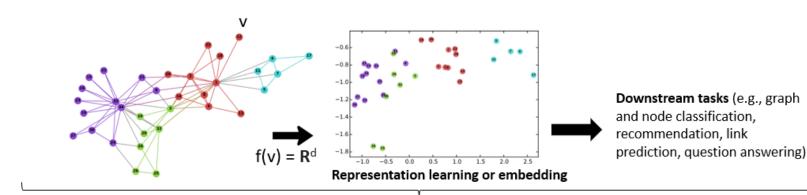


Graph Data in Many Forms

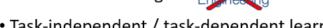


Graph Neural Network (GNN): Key Idea

Learning could be end-to-end



End-to-end learning → Engineering



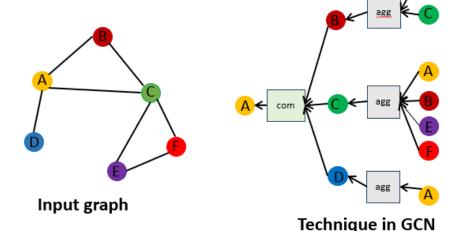
- Task-independent / task-dependent learning.
- Can capture graph structure and node, edge features.

Graph Convolutional Neural Network (GCN)

 Massage passing to use aggregation and combine functions repeated several times.

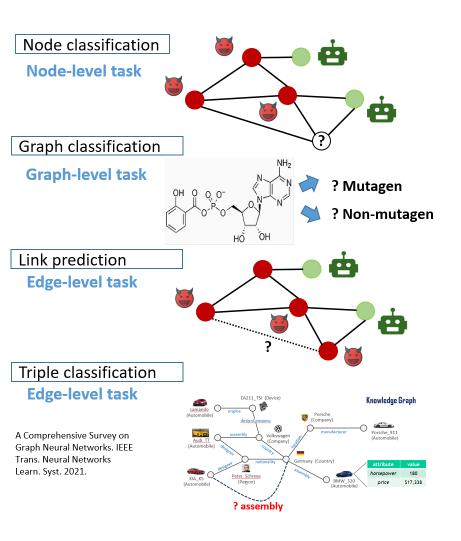
$$H^{(t+1)} = \sigma(\widetilde{D}^{-\frac{1}{2}}. \ \widetilde{A}.\widetilde{D}^{-\frac{1}{2}}.H^{(t)}.W^{(t)})$$

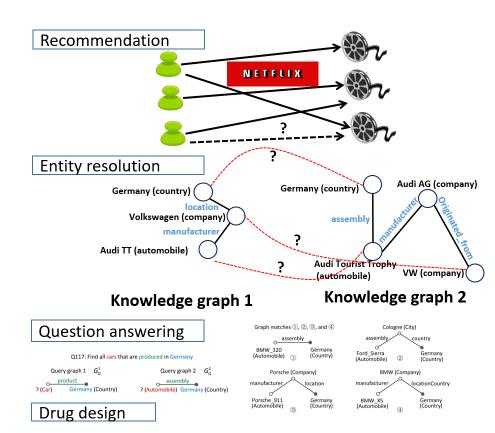
 $\widetilde{A} = A + I_N \qquad H^{(0)} = X \qquad \text{Input Node Features}$



Representation Learning on Networks (WWW Tutorial, 2018)

Graph Neural Network (GNN): Downstream Tasks





• predicting missing links between drug and disease.

Synergy between Graph Data Management and Graph Machine Learning

Graph machine learning and data science pipeline

- How graph machine learning and graph data management benefit each other?
- Application of graph data management in graph machine learning
 - <u>Scalable Graph Embedding</u>
 [PVLDB'23] Distributed Graph Embedding with Information-Oriented Random Walks
 - <u>Dynamic updates in knowledge graph embedding</u>
 [KBS'22] Efficiently Embedding Dynamic Knowledge Graphs
- GNN Explainability
 [SIGMOD'24] View-based Explanations for Graph Neural Networks
 [ICDE'24] Generating Robust Counterfactual Witnesses for Graph Neural Networks
- Application of graph machine learning in graph data management
 - Knowledge graph question answering

[ICDE'22] Aggregate Queries on Knowledge Graphs: Fast Approximation with Semantic-aware Sampling [ICDE'20] Semantic Guided and Response Times Bounded Top-k Similarity Search over Knowledge Graphs

Our Work in Graph Data Management and Machine Learning

- ✓ Big-Graphs: Querying, Mining, Streaming, Uncertainty, Systems, and Beyond
- ✓ User-friendly, efficient, and approximate querying and pattern mining using scalable algorithms, machine learning techniques, and distributed systems

Knowledge-Graph Search

[SIGMOD 11, VLDB 13, ICDE 12 Tutorial, ACM SIGMOD Blog Post, Encyclopaedia of Big Data Technologies, ICDE 20, 22, KBS 22, CIKM 22, SIGMOD Record 23]

Graph Query-By-Example
[ICDE 14, TKDE 15]

Graph Stream
Summarization and
Query
[SNAM 17]

Spatial/Road Network
Query [TKDE 20, SIGMOD 20]

Scalable, Approximate Graph Querying

Reliability and Shortest Path

[EDBT 14, VLDB 15 Tutorial, TKDE 18, 20, Book @Morgan&Claypool, VLDB 19, VLDB 21, TKDE 22]

Influence Maximization and Embedding

[SDM 11, ICDE 16, CIKM 17, ICDE 18, SIGMOD 18, ICDE 23]

Densest subgraph [ICDE 23]

Uncertain Graph Processing

Novel Pattern Mining

[SIGMOD 10, VLDB 20]

Graph Anomaly
Detection [CIKM 12]

Graph-based Entity Resolution

[CIKM 17, VLDB 18]

Graph Summary, Core Decomposition, Multi-layer graph, and Hypergraph [SIGMOD 19, VLDB 17 Tutorial, TKDD 22, VLDB

Complex Graph Mining

Information-centric
Distributed Graph
Embedding [VLDB 23]

Complementary Graph Partitioning [SIGMOD 12]

Graph Storage
Decoupling and Smart
Query Routing
[USENIX ATC 18]

Vertex-Centric Graph Processing

[VLDB 14 Tutorial, EDBT 17]

Distributed Graph Systems Graph Neural Network Explainability [BigData 20, DSAA

Tutorial 23, SIGMOD 24, ICDE 24]

Graph Machine Learning

Relational Data

[SIGMOD 14]

Stream Data [SIGMOD 16]

Blockchain Network

[WebConf 20, 21, WSDM 22, CIKM 22 Tutorial]

Crowd-Sourcing

[CIKM 17, VLDB 18]

Other Big Data Processing

Graph Neural Network (GNN): Explainability [IEEE DSAA 2023 Tutorial]

- Explain the results of high-quality GNNs.
- [Instance-level] Understand which aspects of the input data drive the decisions of the GNN discover critical nodes, edges, subgraphs, and their features that are responsible for GNN outcomes.
- [Model-level] Insight on how GNNs work discover what input subgraph patterns lead to a certain prediction.

Importance

- Desirable to understand and explain the workings and results of black-box GNNs
- bridge domain knowledge with GNN predictions, human-AI collaboration.
- Safety and well-being (e.g., autonomous car, AI in healthcare) trust in deep learning models.
- Understand bias in machine learning (ML) algorithms ML algorithms can amplify bias, model debugging.
- Robustness against adversarial examples improve quality of GNN outputs.
- Legal requirements, e.g., GDPR algorithms to explain their outputs.

Stakeholders

End users, domain experts, decision makers, policy makers, regulatory agencies, researchers, data scientists, and engineers

Challenges with GNN Explanations

[IEEE DSAA 2023 Tutorial]

- Many definitions, motivations, and requirements for explainability.
- trust, causality, transferability, informativeness, fair and ethical decision making, model debugging, recourse, mental model comparison, context-dependent, low-level mechanistic understanding of models, high-level human understanding, what makes users confident about the model.
- Comparing explanations is hard!
- Several quantitative and qualitative evaluation metrics or methods.
- Quantitative: faithfulness (fidelity+, fidelity-), sparsity, contrastivity, accuracy, stability.
- Qualitative: application-grounded, human-grounded, and functionally-grounded evaluation.
- Difficult to obtain ground-truth.
- Other issues: Evaluation via occlusion creates data outside training distribution, bias terms, redundant evidence, trivial correct explanations, weak GNN model, misaligned GNN architecture, problems due to graph data vs. grid data.
- Capture interplay of graph structure and features in GNN's decision making.

Challenges with GNN Explanations

[IEEE DSAA 2023 Tutorial]

- Many definitions, motivations, and requirements for explainabil
- "Ability to explain or to present a model in understandable - trust, causality, transferability, informativeness, fair and eth ging, recourse, mental model comparison, context-dependent models, high-level human understanding, what makes user
- Comparing explanations is hard
- Several quantitative
- terms to humans" Quantitat
- and functionally-grounded evaluation.
- Diffi
- Doshi-Velez and Kim 2017 Other sion creates data outside training distribution, bias terms, redundan rect explanations, weak GNN model, misaligned GNN architecture, data vs. grid data. problems d
- Capture interplay of graph structure and features in GNN's decision making.

Graph Neural Network (GNN) Explainability: Our Work

- Benchmarking of GNN explainability methods (IEEE BigData 2020, IEEE DSAA 2023 Tutorial)
- GNN explanation usability (SIGMOD 2024)
- GNN explanation robustness
 (ICDE 2024)
 - GNN counterfactual evidence (under submission)

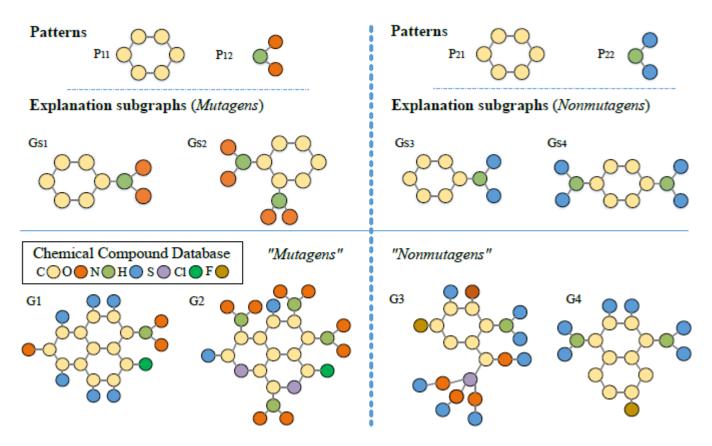
- GNN explanation for model debugging
 - (under submission)
- GNN explanation skyline / pareto optimality

(under submission)



Tingyang Chen, Zhejiang University

Dazhuo Qiu, Aalborg University



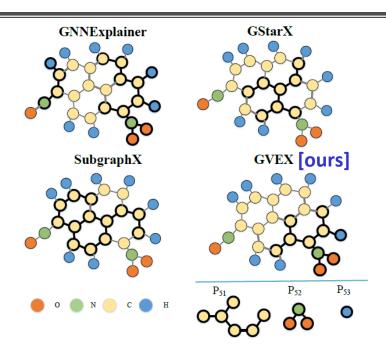
GNN-based drug classification, with graph patterns and induced subgraphs that help understand the results: "which toxicophore occurs in mutagens?"

Challenges with Existing Approaches

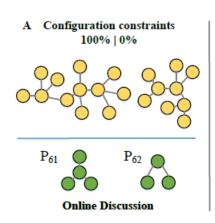
Oversized explanation: Existing methods generate large explanation subgraphs.

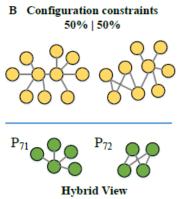
Lack of meaningful explanations for domain experts: Due the oversized explanations containing irrelevant/ repeated structures, it is hard to identify meaningful structures. Not queryable, hence not easy to access and inspect with domain knowledge.

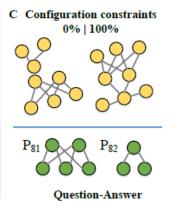
Not configurable explanation based on user setting: Only explaining one class may omit the relevant information between classes.



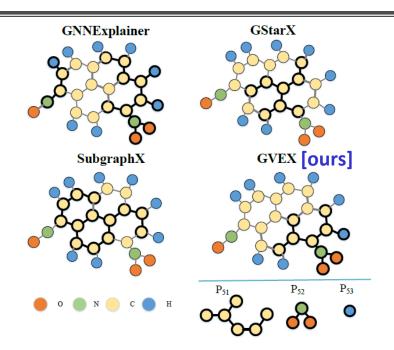
GNN-based drug classification







GNN-based social analysis: REDDIT-BINARY social network dataset, two classes - online-discussion threads and question-answer threads. Three different configuration scenarios.

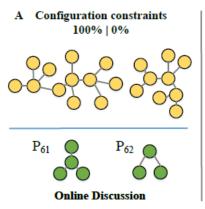


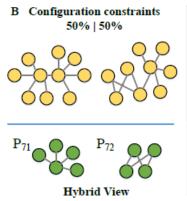
Two-tier Explanation

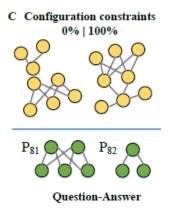
Lower-tier: An explanation subgraph that ensures same prediction (factual) and its removal changes G's prediction label (counterfactual).

Higher-tier: A set of graph patterns that summarizes the explanation subgraphs with coverage guarantee.

GNN-based drug classification





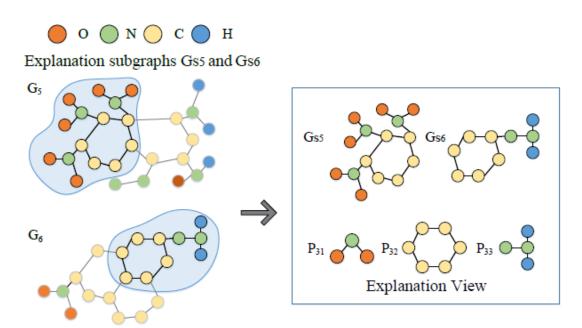


GNN-based social analysis: REDDIT-BINARY social network dataset, two classes - online-discussion threads and question-answer threads. Three different configuration scenarios.

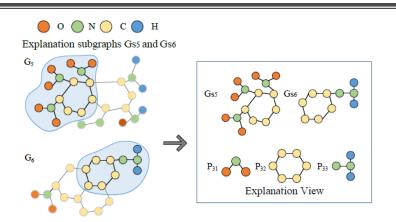
Explanation Subgraphs: Given a GNN M and a single graph G with label M(G) = l, an explanation subgraph G_S^l of G satisfies:

$$M(G) = M(G_S^l) = l \text{ and } M(G \setminus G_S^l) \neq l$$

Explanation Views: Given a graph database \mathcal{G} , a classifier M, and label l, an explanation view consists of $(1)\mathcal{G}_S^l$, a set of explanation subgraphs for the label group \mathcal{G}^l and $(2)\mathcal{P}^l$, a set of patterns that cover the nodes of the explanation subgraphs.



An explanation view for a single class label: explanation subgraphs and patterns



An explanation view for a single class label: explanation subgraphs and patterns

Quality of Explanation Views

Explainability: An explanation view has better explainability if its explanation subgraphs involve more nodes with features that can maximize their influence via a random walk-based message passing process of GNN.

$$f(\mathcal{G}_{\mathcal{V}}^{l}) = \sum_{G_{si} \in \mathcal{G}_{s}^{l}} \frac{I(V_{si}) + \gamma D(V_{si})}{|V_{i}|}$$

Coverage: The set of explanation subgraphs \mathcal{G}_S^l contains total n nodes, where $n \in [b_l, u_l]$, specified by the coverage constraint for label group \mathcal{G}^l .

feature

influence

Explanation View Generation Problem

PROBLEM 1. Given a graph database G, a set of interested labels E s.t. |E| = t, a GNN M, and a configuration C, the explanation view generation problem, denoted as EVG, is to compute a set of graph views $G_V = \{G_V^{l_1}, \dots G_V^{l_t}\}$, such that $(i \in [1, t])$:

- Each graph view $\mathcal{G}_{V}^{l_i} = (\mathcal{P}^{l_i}, \mathcal{G}_{s}^{l_i}) \in \mathcal{G}_{V}$ is an explanation view of \mathcal{G} for \mathcal{M} w.r.t. $l_i \in \mathcal{L}$;
- Each $\mathcal{G}_{V}^{l_i}$ properly covers the label group \mathcal{G}^{l_i} ; and
- Gy maximizes an aggregated explainability, i.e.,

$$G_{\mathcal{V}} = \arg \max \sum_{\mathcal{G}_{\mathcal{V}}^{l_i} \in \mathcal{G}_{\mathcal{V}}} f(\mathcal{G}_{\mathcal{V}}^{l_i})$$

Explanation View Generation Problem: Hardness and Properties

View Verification

Given a graph database \mathcal{G} , configuration \mathcal{C} , and a two-tier explanation structure $(\mathcal{P}, \mathcal{G}_s)$, the view verification problem is NP-complete when the GNN is fixed.

Explanation View Generation (EVG) Problem

For a fixed GNN, EVG is (1) $\sum_{p}^{2}-complete$, and (2) remains NP-hard even when \mathcal{G} has no edges.

Monotone Submodularity

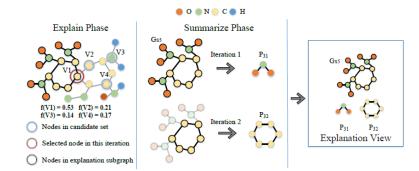
Given G, C and a fixed GNN, $f(G_V)$ is a monotone submodular function of V_S .

Approximation Algorithms and Quality Guarantees

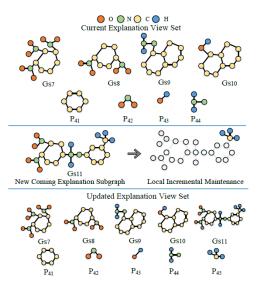
Greedy, Approximation Algorithm: Given a configuration C, graph database G, and a k-layer GNN over label set G, there is a $\frac{1}{2}$ -approximate algorithm for generating explanation views.

Streaming Algorithm: Given a configuration C, graph database \mathcal{G} , and a k-layer GNN, there is an online algorithm that maintains explanation views with a a $\frac{1}{4}$ -approximation.

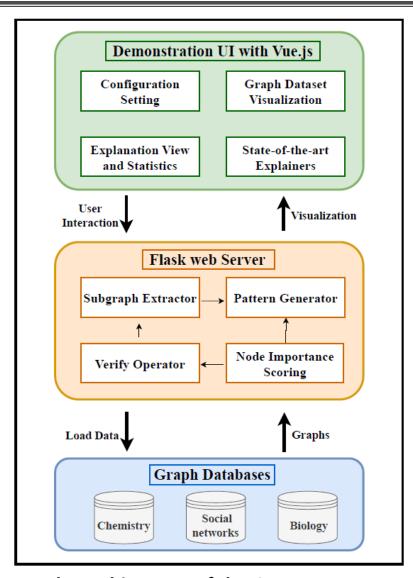
Parallelization: Both algorithms can be parallelized.

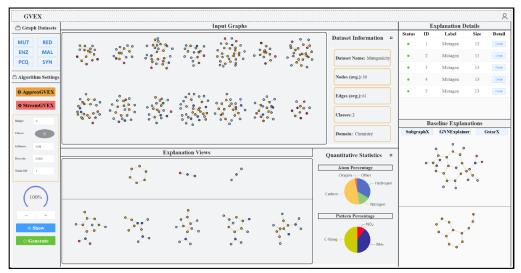


Greedy, approximation algorithm



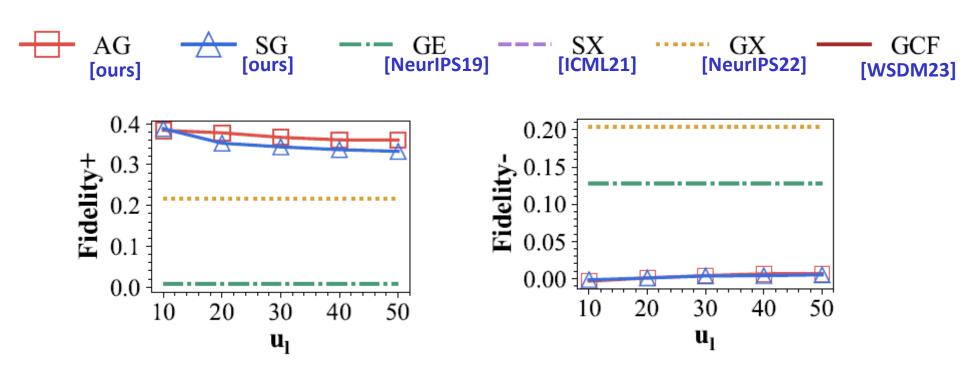
Streaming algorithm





A screenshot of the GVEX frontend

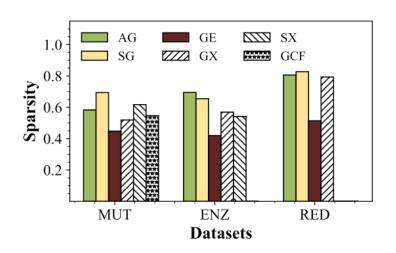
https://youtu.be/q9d7ldulluQ

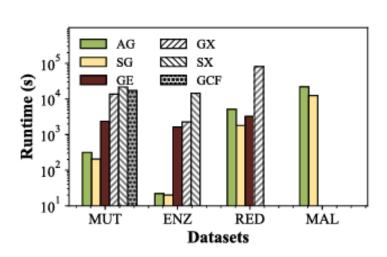


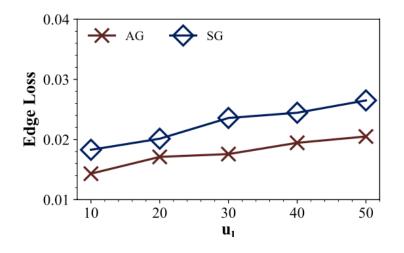
Fidelity+ quantifies the deviations caused by removing the explanation substructure from the input graph. Higher is better.

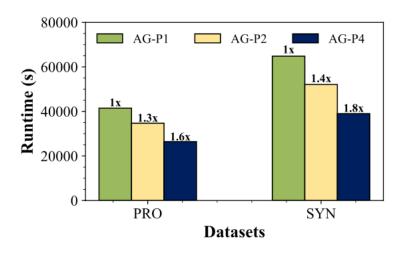
Fidelity- measures how close the prediction results of the explanation substructures are to the original inputs. Lower is better.

REDDIT-BINARY dataset.



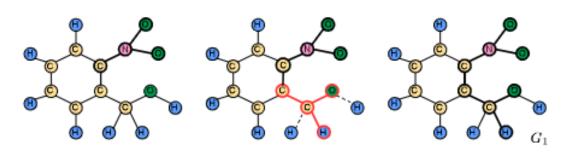






Dazhuo Qiu, Aalborg University

Mengying Wang, Case Western Reserve University



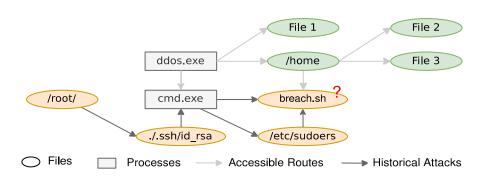
G1: Left-Bold nodes and edges indicate a counterfactual. **Middle-**Red bold nodes and edges indicate a new counterfactual after deleting dotted edges. **Right-**A counterfactual robust to graph edits.

(Factual) Witness: A subgraph G_w that satisfies: $M(v, G) = M(v, G_w) = l$

Counterfactual Witness: A witness that satisfies: $M(v, G \setminus G_w) \neq l$

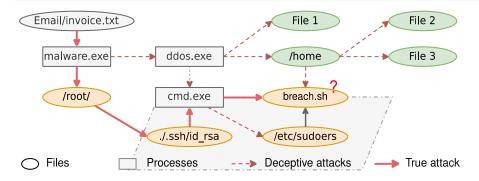
k - Robust Counterfactual Witness: By removing k edges from input graph G, G_W remains a counterfactual witness.

Example - "Vulnerable Zone" in Cyber Networks



GNN-based Security System:

- Detection: Train <u>GNN</u> based on <u>historical</u> attacks to classify files' vulnerability.
- Protection: <u>Enhanced security</u> for vulnerable files (colored orange).



Multi-Phase Cyber Attack Strategy:

- Phase 1: Deception Attacks: Conduct deceptive but harmless attacks to Induce false invulnerable classification on target.
- Phase 2: True Attack: attack by exploiting reduced defenses on target.

Phow can we identify a "<u>Vulnerable Zone</u>" within cyber networks where, <u>if protected</u>, <u>GNN predictions remain solid</u>, even if other parts of the network are <u>disturbed by deceptive attacks</u>?

Robust Explanation Generation Problem: Hardness and Solution

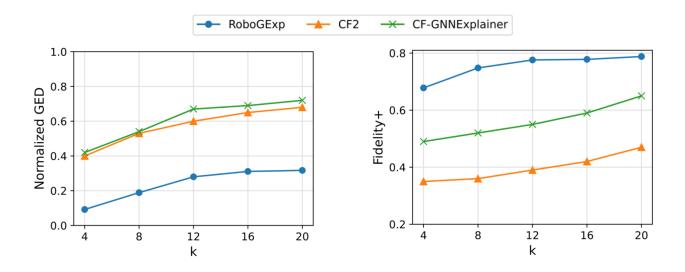
- Factual Explanation (Witness):
 - M(v, G) = M(v, Gs) = l
- Counterfactual Explanation (CW):
 - $M(v, G) \neq M(v, G \setminus Gs) \neq l$
- Robust Explanation (k-RCW):
 - Gs remains consistent under disturbance.

We are the first to consider all three criteria!

- <u>Verification Problem</u>: Given Gs, decide if Gs is a k-RCW for a set of test nodes Vt, w.r.t a model M.
 - Witness verification (*) PTIME.
 - CW verification (*) PTIME.
 - k-RCW verification (*) NP-hard.
- <u>Generation Problem</u>: Given a graph G and Vt, compute a k-RCW if exists.
 - k-RCW generation in general co-NP-hard
 - under (k, \mathbf{b}) -disturbances \bigcirc PTIME.
- We propose effective and efficient solution under (k, b)-disturbance and APPNP GNN. k: global budget, b: local budget. APPNP GNN (ICLR 2019).
- Parallelization scheme with graph partition.

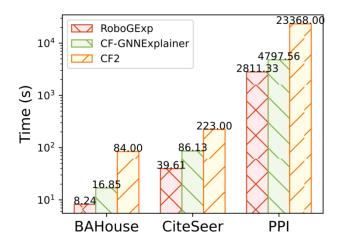
Experiment Results: Effectiveness

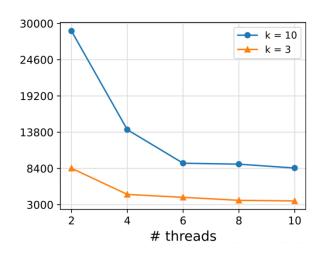
- Methods	Counterfactual	Factual	Robustness
CF-GNNExp (AISTATS 2022)	✓		
CF ² (WWW 2022)	✓	\checkmark	
RoboGExp	✓	\checkmark	✓



Experiment Results: Efficiency & Scalability

- Methods	Counterfactual	Factual	Robustness
CF-GNNExp (AISTATS 2022)	✓		
CF ² (WWW 2022)	✓	\checkmark	
RoboGExp	✓	\checkmark	✓





Dazhuo Qiu, Aalborg University

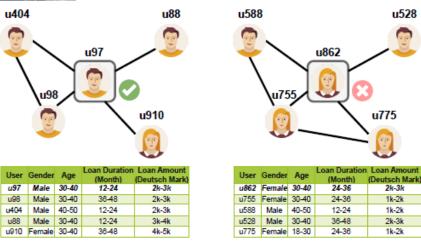
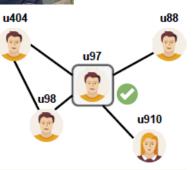
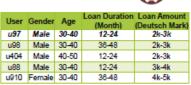
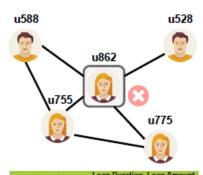


Figure 1: Two customers u97 and u862 from the German Credit dataset [3] are shown at the centers. We present their 1-hop neighborhood structures, along with feature values for all these nodes. Three features, namely age, loan duration, and loan amount are relevant w.r.t. node classification, i.e., whether their loans would be approved or not; whereas gender is a sensitive feature. Notice that u97 and u862 share similar node feature values for age, loan duration, and loan amount. They also share similar 1-hop neighborhood structures with only one edge difference. Notably, u97 and u862 have different genders. A pre-trained GNN predicts different classes for u97 and u862, making each of them a counterfactual evidence of the other.

Dazhuo Qiu, Aalborg University







	User	Gender	Age		(Deutsch Mark)
ſ	u862	Female	30-40	24-36	2k-3k
ĺ	u755	Female	30-40	24-36	1k-2k
I	u588	Male	40-50	12-24	1k-2k
ĺ	u528	Male	30-40	36-48	2k-3k
	u775	Female	18-30	24-36	1k-2k

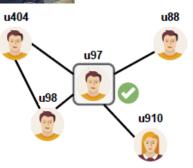
Figure 1: Two customers u97 and u862 from the German Credit dataset [3] are shown at the centers. We present their 1-hop neighborhood structures, along with feature values for all these nodes. Three features, namely age, loan duration, and loan amount are relevant w.r.t. node classification, i.e., whether their loans would be approved or not; whereas gender is a sensitive feature. Notice that u97 and u862 share similar node feature values for age, loan duration, and loan amount. They also share similar 1-hop neighborhood structures with only one edge difference. Notably, u97 and u862 have different genders. A pre-trained GNN predicts different classes for u97 and u862, making each of them a counterfactual evidence of the other.

Counterfactual evidence for node classification

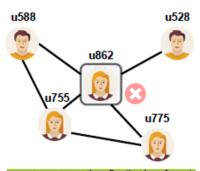
PROBLEM . (TOP-1 LOCAL COUNTERFACTUAL EVIDENCE). Given a query node $v \in V_{test}$, the top-1 counterfactual evidence, $LCE_{opt}(v)$ is a node $u \in V_{test}$ that 1) has a different predicted label w.r.t. v; and 2) attains the highest similarity score KS(v,u) compared to all other nodes in the test set.

$$\mathsf{LCE}_{opt}(v) = \underset{u \in V_{test}, \ M(v) \neq M(u)}{\arg\max} \mathsf{KS}(v, u)$$

Dazhuo Qiu, Aalborg University



12-24



ι	Jser	Gender	Age	Loan Duration (Month)	Loan Amount (Deutsch Mark)
u	862	Female	30-40	24-36	2k-3k
u	1755	Female	30-40	24-36	1k-2k
u	588	Male	40-50	12-24	1k-2k
u	528	Male	30-40	36-48	2k-3k
u	1775	Female	18-30	24-36	1k-2k

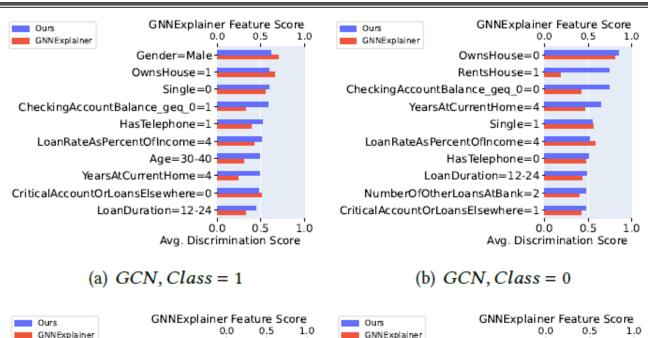
Figure 1: Two customers u97 and u862 from the German Credit dataset [3] are shown at the centers. We present their 1-hop neighborhood structures, along with feature values for all these nodes. Three features, namely age, loan duration, and loan amount are relevant w.r.t. node classification, i.e., whether their loans would be approved or not; whereas gender is a sensitive feature. Notice that u97 and u862 share similar node feature values for age, loan duration, and loan amount. They also share similar 1-hop neighborhood structures with only one edge difference. Notably, u97 and u862 have different genders. A pre-trained GNN predicts different classes for u97 and u862, making each of them a counterfactual evidence of the other.

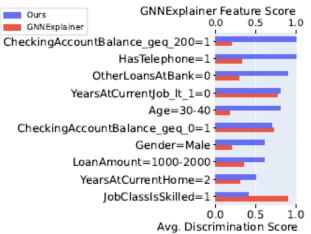
Counterfactual evidence for node classification

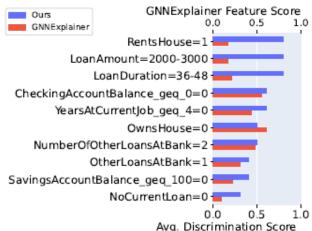
PROBLEM . (TOP-1 LOCAL COUNTERFACTUAL EVIDENCE). Given a query node $v \in V_{test}$, the top-1 counterfactual evidence, $LCE_{opt}(v)$ is a node $u \in V_{test}$ that 1) has a different predicted label w.r.t. v; and 2) attains the highest similarity score KS(v,u) compared to all other nodes in the test set.

$$LCE_{opt}(v) = \underset{u \in V_{test}, \ M(v) \neq M(u)}{\arg \max} KS(v, u)$$

- We convert the counterfactual evidence finding problem to **nearest neighbor search problem** over the vector space.
- We demonstrate applications of our problem in:
 - GNN Explainability,
 - Revealing Unfairness of GNNs,
 - Verifying Prediction Errors,
 - Fine-tuning with Counterfactual Evidences.







Loan Dataset: Feature importance across different GNN classifiers and classes. Class label =1 indicates predicted good customers by the GNN whose loans can be approved. Our findings reveal that "Gender = Male" and "Age = 30-40" are two critical factors based on which the classic GCN could predict a loan approval, whereas the gender bias is reduced when using the FairGNN (WSDM 2021).

(d) FairGNN, Class = 0

Conclusion - GNN Explanability

- User-friendly, interactive, configurable, and robust explanation for graph neural networks (GNNs).
- Synergy between graph data management (e.g., graph view, usability, robustness, parallelization, fairness, vector search) and graph machine learning (e.g., GNN explanation).

Future Work

- Diversified GNN Explanations with Skylines/ Pareto Optimality
- GNN Explanations for Model Slicing and Debugging
- GNN Explanations beyond Classification (e.g., Graph Alignment)

Our Work in Graph Data Management and Machine Learning

- ✓ Big-Graphs: Querying, Mining, Streaming, Uncertainty, Systems, and Beyond
- ✓ User-friendly, efficient, and approximate querying and pattern mining using scalable algorithms, machine learning techniques, and distributed systems

Knowledge-Graph Search

[SIGMOD 11, VLDB 13, ICDE 12 Tutorial, ACM SIGMOD Blog Post, Encyclopaedia of Big Data Technologies, ICDE 20, 22, KBS 22, CIKM 22, SIGMOD Record 23]

Graph Query-By-Example
[ICDE 14, TKDE 15]

Graph Stream Summarization and Query [SNAM 17]

Spatial/Road Network
Query [TKDE 20, SIGMOD 20]

Scalable, Approximate Graph Querying

Reliability and Shortest Path

[EDBT 14, VLDB 15 Tutorial, TKDE 18, 20, Book @Morgan&Claypool, VLDB 19, VLDB 21, TKDE 22]

Influence Maximization and Embedding

[SDM 11, ICDE 16, CIKM 17, ICDE 18, SIGMOD 18, ICDE 23]

Densest subgraph [ICDE 23]

Uncertain Graph Processing

Novel Pattern Mining

[SIGMOD 10, VLDB 20]

Graph Anomaly
Detection [CIKM 12]

Graph-based Entity Resolution

[CIKM 17, VLDB 18]

Graph Summary, Core Decomposition, Multi-layer graph, and Hypergraph [SIGMOD 19, VLDB 17 Tutorial, TKDD 22, VLDB

Complex Graph Mining

Information-centric Distributed Graph Embedding [VLDB 23]

Complementary Graph Partitioning [SIGMOD 12]

Graph Storage
Decoupling and Smart
Query Routing
[USENIX ATC 18]

Vertex-Centric Graph Processing

[VLDB 14 Tutorial, EDBT 17]

Distributed Graph Systems

Graph Neural Network Explainability

[BigData 20, DSAA Tutorial 23, SIGMOD 24, ICDE 24]

Graph Machine Learning

Relational Data

[SIGMOD 14]

Stream Data

[SIGMOD 16]

Blockchain Network

[WebConf 20, 21, WSDM 22, CIKM 22 Tutorial]

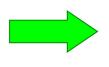
Crowd-Sourcing

[CIKM 17, VLDB 18]

Other Big Data Processing

Approximate (Semantic) Subgraph Search for Knowledge Graphs Querying

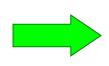
NESS (SIGMOD 2011), NEMA (PVLDB 2013)



Neighborhood-based Fast,

<u>Approximate</u> Graph Search

GQBE (ICDE 2014, TKDE 2015, ICDE 2016)



Graph Query-By-Example [User-Friendliness]

SGQ (ICDE 2020),
AGQ (ICDE 2022, CIKM 2022)

Semantic-Guided and Response-Time Bounded Graph Search, Aggregate Queries on KG Embedding

DKGE (KBS 2022)

Dynamic KG Embedding

DistGER (PVLDB 2023)

Distributed Graph Embedding

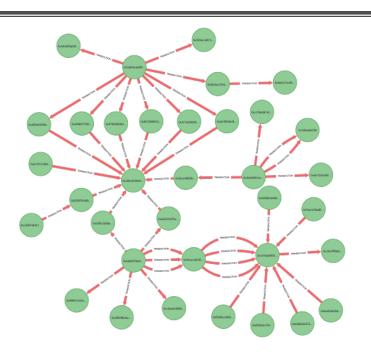
KG-QA (SIGMOD Record 2023)

Survey

LLM Logic Consistency (under submission)

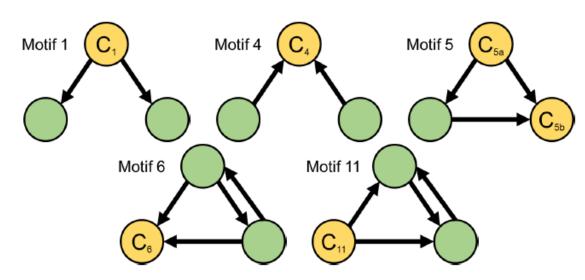
LLM + KG

Subgraph Search: Market manipulators in LunaTerra StableCoin Collapse



Ethernet transaction network

Address/Motif Center	C_1	C_4	C_{5a}	C_{5b}	C_6	C_{11}
Celsius	-	81.2	-	78.9	-	-
hs0327.eth	88.2	67.0	96.2	69.7	81.6	-
Smart LP: 0x413	-	68.4	-	-	95.1	-
Token Millionaire 1	84.6	89.7	-	86.2	74.2	88.9
Token Millionaire 2	69.7	99.5	-	98.7	98.9	37.6
masknft.eth	90.9	90.7	-	82.1	93.3	92.2
Heavy Dex Trader	71.3	96.2	-	-	81.2	-
Oapital	91.6	78.9	60.5	58.5	71.8	92.5
HodInaut	39.9	98.9	-	90.6	99.4	-



Five three-node motifs exhibiting buy and sell behaviors. Nodes labeled C denote the center where a center with an in-degree = 2 indicates buy behavior and an outdegree = 2 indicates sell behavior.

Influential addresses found by our method that match with ground truth

Frontiers in Blockchain (2024)

Takeaway

Synergy between graph data management and graph machine learning

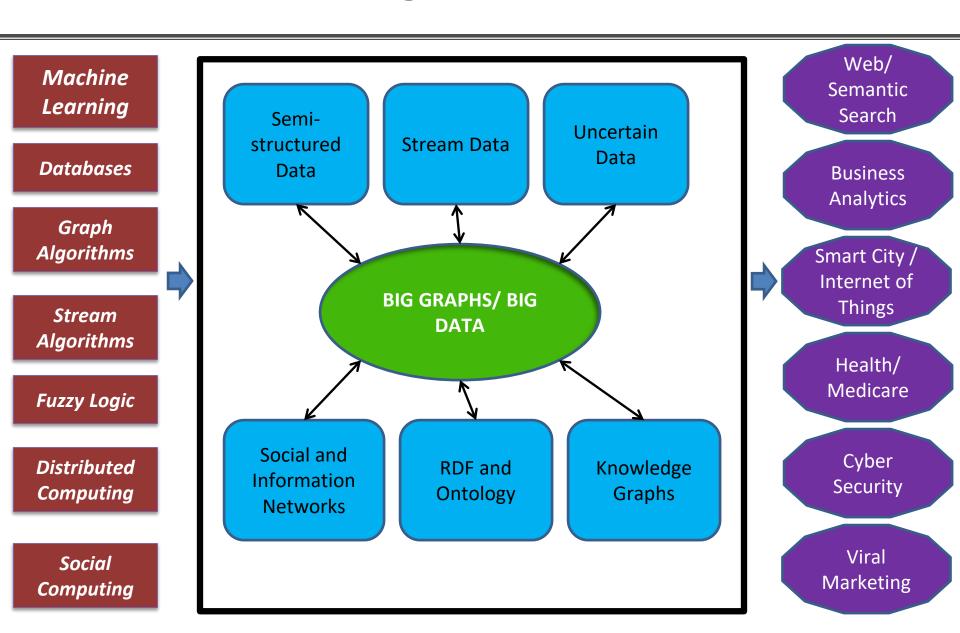
Graph Machine Learning for Graph Data Management:

Embedding based question answering

Graph Data Management for Graph Machine Learning:

- GNN Explanation: usability and robustness
 - Scalable distributed graph embedding systems

Big Picture



Future Direction: LLM+KG

• Retrieval-augmented generation (RAG) to use KG context in order to improve a large language model (LLM)'s accuracy and consistency.

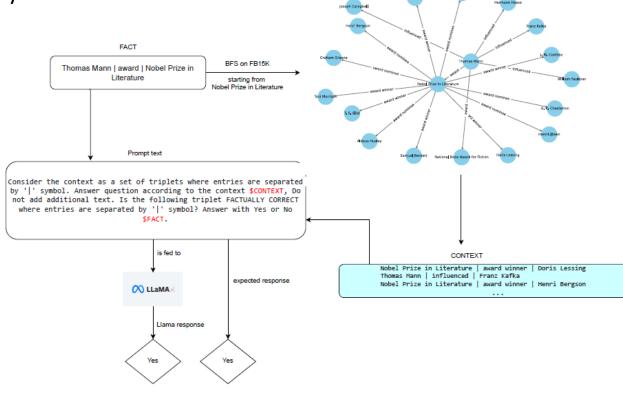
GraphRAG:

Graph-based retrievalaugmented generation

- Complex Fact Checking
- Code Explanation
- Schema Matching

Graph data management + Graph machine learning

Explainability of LLM



Neighborhood graph

LLM-based Query Processing with KG Context