
Aggregate Queries on Knowledge Graphs:
Fast Approximation with Semantic-aware Sampling

Yuxiang Wang1, Arijit Khan2, Xiaoliang Xu1, Jiahui Jin3, Qifan Hong1, Tao Fu1

1 Hangzhou Dianzi University, China 2 Nanyang Technological University, Singapore 3 Southeast University, China
{lsswyx,xxl,qfhong,taof}@hdu.edu.cn, arijit.khan@ntu.edu.sg, jjin@seu.edu.cn

Abstract—A knowledge graph (KG) manages large-scale and
real-world facts as a big graph in a schema-flexible manner.
Aggregate query is a fundamental query over KGs, e.g., “what
is the average price of cars produced in Germany?”. Despite its
importance, answering aggregate queries on KGs has received
little attention in the literature. Aggregate queries can be sup-
ported based on factoid queries, e.g., “find all cars produced
in Germany”, by applying an additional aggregate operation on
factoid queries’ answers. However, this straightforward method
is challenging because both the accuracy and efficiency of
factoid query processing will seriously impact the performance
of aggregate queries. In this paper, we propose a “sampling-
estimation” model to answer aggregate queries over KGs, which
is the first work to provide an approximate aggregate result
with an effective accuracy guarantee, and without relying on
factoid queries. Specifically, we first present a semantic-aware
sampling to collect a high-quality random sample through a
random walk based on knowledge graph embedding. Then, we
propose unbiased estimators for COUNT, SUM, and a consistent
estimator for AVG to compute the approximate aggregate results
based on the random sample, with an accuracy guarantee in the
form of confidence interval. We extend our approach to support
iterative improvement of accuracy, and more complex queries
with filter, GROUP-BY, and different graph shapes, e.g., chain,
cycle, star, flower. Extensive experiments over real-world KGs
demonstrate the effectiveness and efficiency of our approach.

I. INTRODUCTION

Knowledge graphs (KGs) are popular in managing large-
scale and real-world facts [1], [2], such as DBpedia [3], YAGO
[4], Freebase [5], and NELL [6], where a node represents
an entity with attributes, and an edge denotes a relationship
between two entities. Querying KGs is critical for a wide range
of applications, e.g., question answering and semantic search
[7]. However, it is challenging due to the KG’s “schema-
flexible” nature [8]–[13]: The same kind of information can be
represented as diverse substructures [12], [13]. This schema-
flexible nature should be carefully considered in the study of
KG querying, especially for the following two important query
forms: factoid query and aggregate query [14].

Factoid query. The answers to a factoid query are defined
as an enumeration of noun phrases [15], e.g., “Find all
cars produced in Germany” (Q117 from QALD-4 benchmark
[16]). Given the KG in Figure 1(a), we expect answers as
all entities having type Automobile that satisfy the semantic
relation product to the specific entity Germany, e.g., Audi TT
(u10), BMW 320 (u6), etc. Notice that these correct answers
are linked with Germany in structurally different ways in

Figure 1(a), for instance, u10: Audi TT-assembly-Volkswagen-
country-Germany; u6: BMW 320-assembly-Germany. This
reflects the “schema-flexible” nature of a KG and we expect to
find all the semantically similar answers for factoid queries.

Aggregate query. A simple aggregate query is used to explore
the statistical result of a set of entities given a specific entity
and a semantic relation. For example, “what is the average
price of cars produced in Germany?” is an aggregate query
to achieve AVG(price) of all the Automobiles that satisfy the
semantic relation product to the specific entity Germany. We
find that 31% queries from the real query log LinkedGeo-
Data13 and 30% queries from the manually curated query set
WikiData17 are aggregate queries [17].

One frequently used technology to answer factoid queries
is graph query [13], [18]–[22], which we adopt in this work:
A user constructs a query graph Q to describe her query
intention, and identifies the exact or approximate matches of
Q in a KG G. We can also reduce other query forms, such
as keywords and natural languages [20], to graph queries by
translating input text to a query graph [23], [24]. In contrast,
answering aggregate queries on KGs has been mostly ignored
in the literature. Aggregate queries can be extended from fac-
toid queries, by applying an additional aggregation on factoid
queries’ answers to obtain the statistical result of interest [22],
[25] (as Figure 1(b) shows). However, this straightforward
method is problematic due to following reasons.

Effectiveness issue. If aggregate queries are answered via
factoid queries, its effectiveness would depend on the quality
of factoid queries’ returned answers. For example, subgraph
isomorphism [22], [26] only returns answers that exactly match
with the given query graph Q (e.g., only u5 is returned for Q
in Figure 1), while other semantically similar but structurally
different answers are ignored (e.g., u6, u7, and u10). Analo-
gously, a relational or SPARQL query finds answers matching
exactly the schema of the input query, and other valid answers
with different schemas will be ignored (see [8], [13], [27] and
also our experimental results). In addition to exact matching,
several other works [12], [18], [20], [28] return similar answers
to Q. However, it is difficult for them to return 100% accurate
answers (the notion of “accurate” answers could very well
depend on the user’s query intension, or may even be vague
[29], [30]). Calculating the aggregate result over answers with
low quality leads to significant errors. Worse still, we lack an
effective way to quantify the result’s quality.
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Fig. 1: (a) Each entity of this knowledge graph with type Automobile has many numerical attributes, including horsepower, price, etc. (b)
The traditional method computes an aggregate result based on the graph matches via graph query. (c) Our method computes an approximate
aggregate result with an accuracy guarantee in the form of confidence interval (CI) through a “sampling-estimation” model.

Efficiency issue. Since an additional aggregate operation is
applied on the factoid queries’ answers to obtain the aggregate
result, factoid queries’ efficiency substantially affects aggre-
gate queries’ efficiency. Finding answers to a given query
graph Q, however, is computationally expensive (e.g., tens of
seconds are required in [28]). Even the top-k graph query
models still need hundreds of milliseconds to tens of seconds
to respond [12], [13], [20], [22], [31].

In practice, aggregate queries may not need a tardy exact
result. It is more desirable if a query engine first quickly
returns an approximate aggregate result with some accuracy
guarantee (e.g., a confidence interval), while improving the
accuracy as more time is spent [32], [33]. In this way, we
can early terminate the query once the approximate result
is acceptable. This improves the user’s experience and saves
computing resources [13], [34]–[36].

Our solution. Due to the “schema-flexible” nature in KGs,
we adopt the “semantic similarity” [13] (defined in §III) to
measure how semantically similar a candidate answer is to a
query graph. We then propose an iterative and approximate
approach to efficiently answer aggregate queries over KGs,
having an accuracy guarantee, but without requiring factoid
query evaluations. As Figure 1(c) shows, we first collect
answers that are semantically similar to a query graph Q as
a random sample from a KG G (§IV-A). Next, we estimate
an unbiased (or consistent) approximate aggregate result V̂
based on the random sample (§IV-B), and provide an accuracy
guarantee for V̂ by iteratively computing a tight enough
confidence interval CI = [V̂ − ε, V̂ + ε] at a confidence level
1−α, where ε is the half-width of a CI (also called the Margin
of Error). A CI states that the ground truth V is covered by
an interval V̂ ± ε with probability 1 − α. We terminate the
query when a tight CI (with a small enough ε) is obtained,
and ensure that the relative error of V̂ is bounded by a user-
specific error bound eb (§IV-C). To the best of our knowledge,
we are the first to use a “sampling-estimation” model to
answer aggregate queries on KGs with an accuracy guarantee,
together with iterative improvements in error bounds.

Given a query graph Q, it is non-trivial to collect semanti-
cally similar answers to Q as a random sample from a KG G.
First, we cannot directly apply the sampling approaches for
relational datasets [34], [37]–[41], because a KG’s structure
differs from that of a relational data. Though we can model

graphs as relations, it adds overhead in the query: We need
expensive joins to generate intermediate views and then sample
and aggregate over them. Furthermore, relational or SPARQL
query would not find valid answers having different schemas
from Q [8], [13], [27]. Second, existing graph sampling
approaches, e.g., CNARW [42] and Node2Vec [43], only
consider topology information for sampling, which ignores
semantic information in a KG, so an answer in a random
sample could probably have a low semantic similarity to Q.

To this end, we leverage an offline KG embedding model
[44]–[46] to represent predicates as d-dimensional vectors that
can well capture their semantic meanings and measure the
predicate similarity. On top of this, we design a semantic-
aware sampling algorithm via a random walk on G. As a
result, answers that are more semantically similar to Q would
be sampled with higher probabilities than others with lower
semantic similarities. We formally prove that the random walk
converges, and all answers in a random sample are independent
and identically distributed (i.i.d.) random variables.

Contributions. Our key contributions include (1) designing
of a random walk following predicate similarity via KG
embedding to collect a high-quality sample of answers which
are semantically similar to the query graph, (2) theoretical
characterization of our random walk and proposed estimators
that answer aggregate queries over KGs with accuracy guaran-
tees and iterative improvements, (3) extending our solution to
support complex queries with filter, GROUP-BY, and different
graph shapes, e.g., chain, cycle, star, and flower [17] (§V), and
(4) thorough experiments over three diverse real-world KGs
showing accuracy and efficiency improvements against state-
of-the-art methods, and our approach’s effectiveness when a
user varies the error bound interactively (§VII).

As the first step, we mainly focus on non-extreme aggre-
gates {COUNT,SUM,AVG} with accuracy guarantees. Notice
that our solution can also support extreme functions, e.g.,
MAX, MIN without accuracy guarantees (see §VII), while
in future we will study their theoretical accuracy guarantees.
Related work is discussed in §VI, while in §VIII we conclude.

II. PRELIMINARIES

Definition 1: Knowledge graph (KG). A KG is defined
as G = (VG, EG, LG, AG), where VG is a finite set of nodes
and EG ⊆ VG × VG is a set of edges. (1) Each node u ∈
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Fig. 2: An example of aggregate query AQG = (Q, fa)

VG represents an entity and each edge e ∈ EG denotes a
relationship between two entities. (2) A label function LG
assigns a name and various types on each node u ∈ VG, and a
predicate on each edge e ∈ EG. (3) Each node u ∈ VG has a
set of numerical attributes, denoted by AG(u) = {a1, ..., an},
and u.ai indicates the value of attribute ai of u.

We assume that each node u in a KG G has at least
one type and a unique name [12], [47]. If the node type
is unknown, we employ a probabilistic model-based en-
tity typing method to assign a type on it [48]. For ex-
ample, LG(u).type = {Automobile,MeanOfTransportation};
LG(u).name = BMW X6. For each edge e, it has a predicate
such as LG(e) = assembly. Moreover, each node u has a set
of numerical attributes, e.g., AG(u) = {horsepower, price, ...},
such as u.horsepower = 335 for BMW X6.

Definition 2: Aggregate query over G. An aggregate query
over G is defined as AQG = (Q, fa), where Q is a query
graph for searching candidate answers from G and fa is an
aggregate function on the numerical attribute a of the answers
to Q. In this paper, we primarily consider three widely-used
non-extreme aggregate functions {COUNT,SUM,AVG}.

We start with the query graph Q for simple questions — one
of the most common questions [49], [50], involving a single
specific entity and a single predicate, taking the target entities
as the answers [1]. Given our proposed framework to answer
AQG = (Q, fa) for simple questions, we use it as a building
block to support more general cases (discussed in §V).

Definition 3: Query graph. A query graph is defined as
a graph Q = (VQ, EQ, LQ), with query node set VQ, edge
set EQ, and label function LQ. For a simple question, VQ =
{qs, qt} contains two nodes, where qs is a specific node and qt

is a target node. For qs, both the types and name are known,
while for qt, only the types are known. Moreover, EQ has one
edge e = qsqt with a predicate LQ(e).

Example 1: Given a simple question “what is the av-
erage price of cars produced in Germany?”, we formulate
AQG = (Q, fa) in Figure 2. The query graph Q contains a
specific node qs = q1 (type: {Country}, name: Germany), a
target node qt = q2 (type: {Automobile}), an edge e = q1q2
(predicate: product), and fa = AVG on the attribute a = price.

Definition 4: Candidate answers to Q. Given a query
graph Q and a KG G, candidate answers A = {ut1, · · · , utn}
are certain nodes from G: (1) Each uti must have at least one
common type as the target node qt from Q (i.e., LG(uti).type∩
LQ(qt).type 6= ∅). (2) Each uti has semantic similarity si ∈
[0, 1] (defined in §III), indicating how semantically similar the
best subgraph match containing uti is to Q.

Due to the schema-flexible nature of KGs, the same kind of
information can be represented as different substructures [12],
[13]. So we find many semantically similar but structurally
different subgraph matches to a given query graph Q. This

TABLE I: Frequently used notations
Notations Descriptions

G A knowledge graph

AQG = (Q, fa)
An aggregate query over G with a query graph Q
and an aggregate function fa

A A set of candidate answers to Q; A = {ut1, · · · , utn}
SA A random sample of answers collected from A
si The semantic similarity of an answer uti ∈ A to Q
τ A user-input semantic similarity threshold

A+ ⊆ A A set of correct answers to Q; A+ = {uti ∈ A : si ≥ τ}
V The ground truth of AQG; V =fa(A+)

f̂a An unbiased (or consistent) estimator of fa
V̂ The estimated approximate result of AQG; V̂ =f̂a(SA)
eb A user-input error bound

1− α A user-input confidence level
V̂ ± ε The confidence interval (CI) at 1− α confidence level
ε The half width of CI, called the Margin of Error (MoE)

TABLE II: Some candidate answers to the query (Q) in Figure 2

correct
answers

motivates us to adopt the semantic similarity to measure
how semantically similar a candidate answer is to Q. We
introduce a tunable parameter τ as the threshold and view
those candidate answers having si ≥ τ as the correct answers
to Q, denoted by A+ = {uti ∈ A : si ≥ τ}.

Example 2: Table II shows four candidate answers to the
query graph Q in Figure 2. Each answer (second column) is an
entity from the subgraph match to Q (first column) that has a
semantic similarity to Q (third column), e.g., BMW X6 (first
row) has a semantic similarity of 1.0 because its subgraph
match is exactly the same as Q. Also, KIA K5 (last row) has
a semantic similarity of 0.82 because its subgraph match is
semantically quite different from Q. By setting τ = 0.85,
KIA K5 can be eliminated from the correct answers.

A domain expert can tune τ appropriately according to
her experience and based on available human annotation (an
example is given in §VII). So, we resort to semantic similarity-
based ground truth (or τ -relevant ground truth, abbreviated
as τ -GT) for evaluation, in addition to human annotation-
based ground truth (abbreviated as HA-GT) when available.
We obtain τ -GT V of AQG=(Q, fa) by applying fa on all
those τ -relevant correct answers A+ to Q. That is, V =fa(A+).
Given above definitions, we are interested in the following
problem. Frequently used notations are given in Table I.
Approx-AQG. Given an aggregate query AQG = (Q, fa), a
KG G, an input error bound eb, and a confidence level 1−α,
we aim to: (1) design a sampling algorithm D to collect a
random sample SA = D(A) of the candidate answers A from
G, (2) estimate the approximate result V̂ based on SA with a
confidence interval V̂ ± ε at 1 − α confidence level, and (3)
ensure that the relative error of V̂ is bounded by eb.

V̂ = f̂a(SA)

s.t. Pr[V̂ −ε ≤ V ≤ V̂ +ε] = 1−α and |V̂ −V |/V ≤ eb (1)

In Eq. 1, f̂a is an unbiased (or consistent) estimator of
the given aggregate function fa. The approximate result V̂



Algorithm 1: Semantic Similarity-based Baseline (SSB)
Data: knowledge graph G, aggregate query AQG = (Q, fa),

threshold τ , and subgraph boundary n
Result: aggregate result V of the τ -relevant correct answers
// n-bounded subgraph construction

1 us = getMappingNode(Q.qs);
2 G′ = getBoundedGraph(G, us, n);
// τ-relevant correct answers enumeration

3 for ∀uti ∈ A ⊆ G′ do
4 si = getSimilarity(uti ,Q)≥ τ : A+.add(uti) ? continue;

5 return V = fa(A+);

is a point estimator to the ground truth V and a 1 − α level
confidence interval CI = [V̂ −ε, V̂ +ε] is computed to quantify
the point estimator’s quality, which states that V is covered
by an estimated range V̂ ± ε with probability 1−α. The half
width of CI, denoted by ε, is called the Margin of Error (MoE).
Generally, the smaller MoE shows the higher quality of V̂ , i.e.,
V̂ is much closer to V . In §IV-C, we prove that the accuracy
guarantee |V̂ − V |/V ≤ eb is ensured if the MoE is small
enough to satisfy ε ≤ V̂ ·eb/(1+eb) (Theorem 2). Otherwise,
we enlarge the sample SA = SA ∪∆SA and repeat Eq. 1 to
continuously refine the CI = V̂ ± ε until ε ≤ V̂ · eb/(1 + eb).

III. THE SEMANTIC SIMILARITY BASELINE

Before discussing our approximate solution, we introduce
a simple, but costly enumeration method, called Semantic
Similarity-based Baseline (SSB), to answer an aggregate query
AQG=(Q, fa). We apply SSB to get semantic similarity-based
ground truth (τ -GT) for effectiveness evaluation (§VII).

The basic idea of SSB (Algorithm 1) is to enumerate all
candidate answers A, find all correct answers A+ ⊆ A having
semantic similarities si ≥ τ (τ is a predefined threshold),
and then compute the aggregate result over A+. Considering
all candidate answers, however, is unnecessary, because graph
queries exhibit strong access locality [51], thus most correct
answers could be found in an n-bounded space of the specific
node [13] (in §VII, we empirically find that n=3 can retrieve
99% of all correct answers). Hence, it is reasonable to limit
the search space of SSB in an n-bounded subgraph G′ of G.
n-bounded subgraph construction. Given a query graph Q
and a KG G, we get the mapping node us from G for
the specific node qs from Q that satisfies: LG(us).name =
LQ(qs).name, LG(us).type ∩ LQ(qs).type 6= ∅ (Line 1).
Then we conduct a BFS starting from us to construct the
n-bounded subgraph G′, of which each entity u from G′ is
within n-hops from us (Line 2). Since a KG adopts some
entity disambiguation methods [52]–[54] to ensure that each
node has a unique name, for simplicity we assume that qs

has a unique mapping node us. We next introduce how to
measure the semantic similarity of each candidate answer from
G′ (Lines 3-4). This is the most expensive step in SSB.
Semantic similarity of an answer. We start with defining a
subgraph match M(uti) of a candidate answer uti ∈ A.

Definition 5: Subgraph match [13]. Given a simple
query graph Q and an n-bounded subgraph G′, a subgraph
match M(uti) to Q is defined as an edge-to-path mapping
from the query edge e = qsqt in Q to a path usuti in

G′. (1) For the specific node qs, us is its mapping node
satisfying LG(us).name = LQ(qs).name and LG(us).type ∩
LQ(qs).type 6= ∅. (2) For the target node qt, uti is a candidate
answer that satisfies LG(uti).type ∩ LQ(qt).type 6= ∅.

For example, in Table II, the subgraph match 〈Audi TT-
assembly-Volkswagen-country-Germany〉 contains an answer
Audi TT (i.e., uti). Intuitively, a subgraph match M(uti) is
more semantically similar to Q if each edge e′ on the path
usuti is more semantically similar to the query edge e in Q.
Following [13], we define the semantic similarity s[M(uti)] of
M(uti) to Q as the geometric mean of the predicate similarities
of all edges in usuti (Eq. 2), where sim(LG(e′),LQ(e)) is the
predicate similarity between e′ and e; l is the length of usuti.
If there are multiple subgraph matches of uti, we compute
the semantic similarity si of uti as the maximum semantic
similarity considering all its subgraph matches (Eq. 3).

s[M(uti)] = l

√√√√ ∏
e′∈usut

i

sim(LG(e′), LQ(e)) (2)

si = max
M(ut

i)
s[M(uti)] (3)

We leverage an offline KG embedding model to obtain
the predicate similarity between two edges e′ and e. A KG
embedding aims to represent each predicate and entity in a KG
as a d-dimensional vector, it can preserve well the semantic
meanings and relations using these learned semantic vectors
[1]. We refer interested readers to [13], [44] for more details.
The similarity between two predicates sim(LG(e′), LQ(e))
(e.g., sim(assembly, product)) can be computed by the cosine
similarity between their predicate vectors e and e′.

sim(LG(e′), LQ(e)) =
e′ · e

||e′|| × ||e|| (4)

Example 3: Consider the answer Audi TT in Table II
for the query graph in Figure 2. Its semantic similarity is
2
√

0.98× 0.81=0.89, where sim(assembly, product)=0.98 and
sim(country, product)=0.81, based on the TransE model [44].

In §VII, we apply SSB to get semantic similarity-based
ground truth (i.e., τ -relevant ground truth, τ -GT) for effec-
tiveness evaluation, besides human annotation-based ground
truth (HA-GT). SSB can work with any KG embedding model.
Ideally, if we have a high-quality KG embedding model, then
we can distinguish the implicit semantics of predicates well
by Eq. 4; hence, we can effectively represent the semantics
of different paths and answers by Eq. 2-3. So, it is likely that
both τ -GT and HA-GT would be similar for an appropriate
τ . In §VII, we present the effectiveness of our approximate
solution (§IV) w.r.t. both τ -GT and HA-GT. We also study
the effect of KG embedding models on effectiveness.
Remarks. (1) Different from structure-based similarity which
assumes that a shorter path has higher similarity [18], [31],
[55], our semantic similarity captures the implicit semantics
of a path by KG embedding. The path length usually does
not reflect the semantics of a path, and a longer path might
have a higher semantic similarity than a shorter one to a
given query graph. E.g., a longer path (BMW Z4-assembly-



Regensburg-federalState-Bavaria-country-Germany) may be
semantically more similar than a shorter path (KIA K5-
designer-Peter schreyer-nationality-Germay) w.r.t. the query
graph in Figure 2. (2) As semantic similarity of a path is non-
monotonic w.r.t. its length (Eq. 2), Dijkstra-like algorithm is
inadequate to directly find the path from us to uti with the
highest semantic similarity. Instead, one needs to enumerate
all paths from us to uti, compute their semantic similarities,
and find the best one (Eq. 3). (3) SSB’s time complexity is:
O(|A| ·mn), where m is the average degree of an entity in
a KG and mn is the search space of path enumeration for
each candidate answer in A. In our implementation, we do
not explicitly construct the n-bounded subgraph G′, rather all
paths up to length n from us are considered for each candidate
answer in A. Due to the inefficiency of SSB, we introduce a
lightweight “sampling-estimation” solution in §IV.

IV. SAMPLING-ESTIMATION SOLUTION

We first provide a high-level introduction to our “sampling-
estimation” solution, then we drill down into the details
(§IV-A-IV-C) and show the entire algorithm in §IV-D. Given
a KG G and an aggregate query AQG = (Q, fa), we do the
followings. (1) Semantic-aware sampling on KGs (§IV-A): We
collect answers with higher semantic similarities to Q as a
random sample SA, via a semantic-aware random walk sam-
pling over G. (2) Approximate result estimation (§IV-B): We
consider the semantic similarity to design unbiased estimators
for {COUNT, SUM} and a consistent estimator for AVG, then
apply them on SA to estimate the approximate result V̂ . (3)
Accuracy guarantee (§IV-C): We derive an accuracy guarantee
based on the Central Limit Theorem (CLT) in the form of
confidence interval CI = V̂ ± ε and iteratively refine the CI
until an acceptable accuracy (Theorem 2) is attained.
A. Semantic-aware Sampling on KGs

1) Classic Random Walk on Graphs: Random walk is the
mainstream technique for graph sampling due to its scalability
and simplicity of implementation [56]. Random walk sampling
on a KG G is modeled as a finite Markov Chain [42], having
the following steps. A walker starts from a randomly selected
node u0 ∈ VG, then randomly chooses u0’s one neighbor and
moves to it with the transition probability defined in the tran-
sition matrix P = |VG|× |VG|. This walker continues to walk
until a stationary distribution π = {π1, ..., π|VG|} is reached,
where

∑
πi = 1 and πi is the stationary visiting probability of

each node ui ∈ VG when random walk converges. The walker
keeps walking after π is reached and collects all visited nodes
as a random sample of VG. Each collected node ui can be
viewed as being sampled with its visiting probability πi.

The transition matrix P is the key to the random walk
sampling. Different P are required for different downstream
applications. Unlike previous topology-aware graph sampling
works [42], [43], [56], we are the first to develop a semantic-
aware graph sampling on KGs for aggregate queries.

2) Semantic-aware Random Walk Sampling: Similar to
SSB, we expect to run our semantic-aware random walk
sampling on the n-bounded subgraph G′ rather than on the
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entire G, to improve the efficiency by reducing the scope of
random walk. To achieve this, in our implementation, we limit
the random walk on G within n-hops from the mapping node
us. For simplicity of understanding, we still use G′ (the n-
bounded subgraph) to indicate the scope of our random walk,
this is the induced graph formed by those nodes within n-hops
from us. We next introduce our design of transition matrix P
by considering the semantic similarity. Then, we discuss two
phases of our semantic-aware sampling based on P : random
walk until convergence and continuous sampling.
(1) Transition matrix. We design a |VG′ | × |VG′ | transition
matrix P = [pij ] for an n-bounded subgraph G′ (VG′ is its
node set). We aim to collect answers having higher semantic
similarities as a random sample SA. So, we ensure that such an
answer has a greater visiting probability πi when the random
walk converges to a stationary distribution π. With greater πi,
there is a higher probability of the answer being sampled.
Transition probability. Intuitively, if we can design a transi-
tion matrix P to guide a walker towards an answer uti with the
greatest si as much as possible, then this uti is more likely to
have a greater visiting probability πi at convergence. So, we
assign a greater transition probability pij on each edge e′ from
G′ having a higher predicate similarity sim(LG(e′), LQ(e))
to the query edge e from Q. Given a node ui from G′,
its neighbors are denoted as N(ui). We use e′ = uiuj
to indicate the adjacency edge between ui and its neighbor
uj ∈ N(ui). We can easily compute the predicate similarity
sim(LG(e′), LQ(e)) by Eq. 4 and assign a transition prob-
ability pij on e′ that is proportional to sim(LG(e′), LQ(e))
by Eq. 5, where Z is the normalization constant and the total
probability of moving from ui to other nodes in N(ui) should
equal to one according to the property of Markov Chain.

pij = Z · sim(LG(e′), LQ(e)) (5)

s.t.
∑

uj∈N(ui)

pij = 1

Example 4: Figure 3 illustrates an example of transition
probability calculation for the query AQG in Figure 2. Figure
3(a) shows a KG with nodes in 2-hops from u1 (Germany). In
Figure 3(b), each adjacency edge of u1 has a predicate similar-
ity to the predicate product. The transition probability p1j for
uj ∈ N(u1), such as p14= 0.98

0.98+0.81+0.79+0.14+0.12=0.345, is
given in Figure 3(c). A walker starting from u1 will likely se-
lect u4, u5, or u2 as next step (they are more relevant to reach
automobile nodes), rather than other irrelevant nodes (i.e., u7
and u8). Moreover, the automobile u4 has a higher probability
to be sampled than u3 and u6, because p14 > {p15, p12}.



Analysis of the convergence. We must ensure that the random
walk using the transition matrix P initialized by Eq. 5 can
converge to a stationary distribution. A finite Markov Chain
(MC) can converge if it is irreducible and aperiodic [57]. An
MC is irreducible if any two nodes are reachable in finite steps.

Lemma 1: Our semantic-aware random walk is irreducible.
We prove this in our extended version [58]. Intuitively, this

holds because each edge has a non-zero transition probability.
In an MC, each node ui has period k if any return to ui

occurs in multiples of k steps, and an MC is aperiodic if
it has at least one node having period one [57]. To satisfy
the aperiodic property, we change the structure of G′ with a
small modification: We add an additional self-loop edge on the
mapping node us with a small predicate similarity pss on it
(0.001 in this work). A walker starting from us tends to walk
outward rather than be stuck at us due to this small pss, so it
has little effect on the convergence time. It is easy to verify
that our random walk is aperiodic after this modification.

Lemma 2: Our semantic-aware random walk is aperiodic
after addition of self-loop edge on the mapping node us.

Based on Lemma 1-2, we conclude that our semantic-aware
random walk can converge to a stationary distribution π.
(2) Random walk until convergence. We start the random
walk from the mapping node us. In each walk step, we use a
walking-with-rejection policy [42] to determine the next node.
Specifically, suppose a walker is currently at node ui, we
select a neighbor uj ∈ N(ui) randomly and accept it with
probability pij . If uj is rejected, then we repeat it until one
node is accepted. After moving from ui to uj , we update the
stationary probability πj by Eq. 6. We initialize the stationary
distribution as π = {1, 0, ..., 0}, where the mapping node us

has πs = 1 because we start the random walk from us.

πj =
∑

ui∈N(uj)

πi · pij (6)

Eq. 6 is a standard way to update π in Markov Chain, which
guarantees

∑
πi = 1. Random walk converges if π is no

longer changing (i.e., π·P = π), then we obtain the stationary
distribution π = {π1, ..., π|VG′ |} for all nodes VG′ ∈ G′.
(3) Continuous sampling. As mentioned in §IV-A1, the orig-
inal continuous sampling returns a random sample of node set
VG′ by continuous walking on G′ after convergence. In our
case, we expect to collect a random sample SA of the candi-
date answers A instead of a sample of VG′ . So, we make the
following changes to the original continuous sampling. First,
we extract the stationary distribution πA = {π′1, · · · , π′|A|} of
A from the stationary distribution π = {π1, · · · , π|VG′ |} of
VG′ . For each answer uti ∈ A, we compute its new visiting
probability π′i = πi/

∑
πi where πi ∈ π is the original

visiting probability of uti, so that the cumulative probability∑
π′i = 1 holds for πA. Second, we conduct the continuous

sampling to collect each visited answer uti ∈ A to SA with its
probability of π′i ∈ πA, and ignore all the non-answer nodes.

Theorem 1: All the answers in SA are independent and
identically distributed (i.i.d.) random variables.

Proof: In continuous sampling, the acceptance decision for
each uti ∈ SA is made independently, whether uti is sampled
depends only on its visiting probability π′i and is irrelevant to
the fact that other answers are sampled or not. Moreover, each
visiting probability π′i comes from the identical distribution
πA. So, all the answers in SA are i.i.d random variables.
Remarks. We stop sampling after collecting enough answers.
A large or small |SA| may lead to over- or under-sampling.
We discuss how to configure |SA| appropriately in §IV-C.
B. Approximate Result Estimation

We present unbiased estimators for {SUM, COUNT} and a
consistent estimator for AVG.

1) Aggregation Estimators: We collect a random sample
SA from a nonuniform stationary distribution πA. Since each
answer in SA is sampled with different probability, different
answers should contribute differently to estimation. So, we
cannot apply estimators designed for a uniform sample, e.g.,
[34], [37], [38], because they are unbiased only when each
tuple is sampled with the same probability. Alternatively, we
provide estimators f̂a based on the Horvitz-Thompson estima-
tors [59] as follows, where π′i ∈ πA is the visiting probability
of each answer uti ∈ SA, and S+

A = {uti ∈ SA : si ≥ τ} is
the set of answers in SA having semantic similarity ≥ τ .

f̂ sum
a (SA) =

1

|S+
A|

∑
ut
i∈S

+
A

uti.a

π′i
(7)

f̂count
a (SA) =

1

|S+
A|

∑
ut
i∈S

+
A

1

π′i
(8)

f̂avg
a (SA) =

f̂ sum
a (SA)

f̂count
a (SA)

=

∑
ut
i∈S

+
A
uti.a/π

′
i∑

ut
i∈S

+
A

1/π′i
(9)

Lemma 3: The estimator for SUM is unbiased. E[f̂ suma ] =∑
ut
i∈A+ uti.a, here A+ ⊆ A is the set of correct answers.

Lemma 4: The estimator for COUNT is unbiased:
E[f̂ counta ] = |A+|, here A+ ⊆ A is the set of correct answers.

We provide unbiasedness proofs in extended version [58].
Lemma 5: The estimator for AVG is consistent.
Proof: We prove that f̂avga is consistent through two steps

by the Strong Law of Large Numbers (SLLN) [42], [60], [61].
Step 1. We first transform f̂avga according to the importance
sampling framework [62] by setting a weight wi = Ui/π

′
i for

each uti ∈ S
+
A , where Ui = 1

|S+
A|

(U is a uniform distribution).

f̂avg
a =

∑
ut
i∈S

+
A

ut
i.a

π′
i∑

ut
i∈S

+
A

1
π′
i

=

1

|S+
A|

∑
ut
i∈S

+
A

Ui
π′
i
· uti.a

1

|S+
A|

∑
ut
i∈S

+
A

Ui
π′
i

=
µ(wi · uti.a)

µ(wi)
.

Step 2. According to SLLN, the mean (µ) of any function of
samples collected from a stationary distribution approximates
to the expectation of this function over the stationary distri-
bution [42], that is, µ(g)→ Eπ[g]. So we have the following:

µ(wi · uti.a)

µ(wi)
→ EπA [wi · uti.a]

EπA [wi]
=
EU [uti.a]

1
=

∑
ut
i∈A

+ u
t
i.a

|A+| .

Thus, AVG’s estimator is consistent, because its expectation
converges almost surely to the true mean of all uti ∈ A+.



Remarks. The estimators in Eq. 7-9 are mean-like expres-
sions, so we can provide CLT-based accuracy guarantee for
them (§IV-C). Since it is hard to form a mean-like estimator
for extreme functions (e.g., MAX, MIN), we should seek
other theories, e.g., Extreme Value Theory (EVT) [63] for
accuracy guarantee. If we can control the sample’s distribution
to follow Generalized Extreme Value (GEV) or Generalized
Pareto distribution (GPD), then we may be able to do the
EVT-based estimation. We keep this as an open problem.

2) Correctness Validation for the Sample: Although our
semantic-aware sampling is designed to collect answers with
greater semantic similarities as the sample SA, it is still likely
to involve a few answers with lower semantic similarity due to
the randomness of sampling. For the query in Figure 2, we find
that 12% sampled answers have semantic similarity < τ on
average when τ = 0.85. This would affect the accuracy if we
directly regard all sampled answers as correct and apply Eq.
7-9 for estimation. We need a method to quickly validate each
answer’s correctness before estimation. This is exactly what
we do in Eq. 7-9: We first compute S+

A = {uti ∈ SA : si ≥ τ}.
In §VII-C, we show that our method accounts for 27% of query
time, but offers 9X effectiveness improvement on average.
Basic idea. A straightforward way of correctness validation
for an answer uti ∈ SA is to find the subgraph match M(uti)
= usuti having the greatest semantic similarity to the query
graph. Enumerating all subgraph matches, however, is com-
putationally expensive. Instead, we present a heuristic method
to find a subgraph match with a higher likelihood of having
the greatest semantic similarity and check its correctness, thus
pruning other matches to improve the efficiency.
Greedy search heuristic. We start search from the mapping
node us by considering it as the current node. We also initialize
a candidate set with us’s neighbors. Every time, we select the
node u from the candidate set that has the highest visiting
probability π, and make it the current node. We update the
candidate set by adding u’s neighbors that were not current
nodes in the past and remove u from it. We continue to search
and record all the possible paths from us till an answer uti
becomes the current node. The found path usuti is used as the
(heuristically) best subgraph match for correctness checking.
Effectiveness analysis. In the context of our greedy search
heuristic, a false positive indicates that an incorrect answer uti
is reported as correct. False positive would strongly impact
the estimation accuracy. Fortunately, no false positive would
happen in our method. Consider an incorrect answer uti, all its
subgraph matches must have a semantic similarity < τ . So, we
never include it in S+

A , no matter what subgraph match is found
by our method. On the other hand, a false negative indicates
that a correct answer uti is reported as incorrect. This happens
when the subgraph match found so far is not the optimal one.
To reduce the chances of false negative, we introduce repeat
factor r in our correctness validation. Specifically, greedy
search continues searching until r paths from us to uti are
found and returns the correctness of the one with the greatest
semantic similarity. The larger r is, the lower is the probability

of false negative, but this increases validation time. In §VII-D,
we show that a balance is achieved when r = 3.

C. Accuracy Guarantee

Given an approximate result V̂ (Eq. 7-9) and a user-specific
error bound eb, we ensure that the relative error |V̂ −V |/V ≤
eb, where V is the τ -relevant ground truth. Specifically, we
compute a confidence interval CI = V̂ ± ε (at a user-specific
confidence level 1−α) to quantify V̂ ’s quality. This CI states
that V is covered by an estimated range V̂ ±ε with probability
1 − α. The half width ε is the Margin of Error (MoE). We
first prove that |V̂ − V |/V ≤ eb holds with probability 1− α
if ε ≤ V̂ ·eb

1+eb
. Then, we show how to compute ε efficiently.

Theorem 2: If the MoE ε of the CI satisfies ε ≤ V̂ ·eb
1+eb

, then
the relative error of the approximate result is upper bounded
by eb, denoted as |V̂ − V |/V ≤ eb, with probability 1− α.

Proof: Given the CI = [V̂ − ε, V̂ + ε] at the confidence
level 1− α, we prove this theorem in two steps.
Step 1. Suppose that V is located in the CI’s right half-width,
i.e., V̂ ≤ V ≤ V̂ + ε, then we have the following derivation
and (V − V̂ )/V ≤ eb holds if ε/V̂ ≤ eb (i.e., ε ≤ V̂ · eb).

(V − V̂ )/V ≤ (V − V̂ )/V̂ ≤ ε/V̂
Step 2. Suppose that V is located in CI’s left half-width, i.e.,
V̂ − ε ≤ V ≤ V̂ . Then we say that (V̂ − V )/V ≤ eb holds if
ε/(V̂ − ε) ≤ eb (i.e., ε ≤ V̂ ·eb

1+eb
) by the following derivation.

(V̂ − V )/V ≤ ε/V ≤ ε/(V̂ − ε)

In summary, |V̂−V |V ≤ eb holds if ε ≤ V̂ ·eb
1+eb

, because V̂ ·eb
1+eb

is
a tighter bound (≤ V̂ ·eb). Since our CI of V̂ has a confidence
level 1− α, the above holds with probability 1− α.
Confidence interval calculation. The Central Limit Theorem
(CLT) is applied to compute the confidence interval [37]. We
take SUM as an example to show the basic idea. Consider
Vi = uti.a/π

′
i as a random variable w.r.t. each answer uti ∈ S

+
A .

The approximate result V̂ can be viewed as the mean of a set
of random variables: {Vi|uti ∈ S

+
A} according to Eq. 7. From

CLT, we know that if a point estimator takes the form of
the mean of i.i.d. random variables, then it follows a normal
distribution [2]. Hence, we have V̂ ∼ N(µV̂ , σ

2
V̂

), and the
MoE ε of the confidence interval V̂ ± ε at a confidence level
1− α can be calculated based on CLT as follows.

ε = zα/2 · σV̂ (10)

Here, zα/2 is the normal critical value with right-tail proba-
bility α/2, that can be obtained from a standard normal table.
We use Bag of Little Bootstrap (BLB) [64] to estimate σV̂ .
Bag of little bootstrap. We initialize the desired sample size
N = λ · |A| as a fraction of the candidate answer set A, where
λ is the desired sample ratio. (1) BLB collects t small samples
{Si|i = 1, · · · , t} from A to form the random sample SA =⋃t
i=1 Si, each Si has a size |Si| = Nm, so we have |SA| =

t ·Nm. The scale factor m ∈ [0.5, 1] is used in [64] to satisfy
t · Nm < N . (2) For each small sample Si, BLB estimates
σV̂ by a standard bootstrap [65] (given below) and computes



an MoE εi by Eq. 10. (3) Given a set of MoE {ε1 · · · εt} for
t small samples, BLB computes the final ε =

∑
εi/t.

Bootstrap. (1) We collect B resamples from SA with replace-
ment, each resample contains |SA| answers. (2) We compute
the approximate result for each resample as {V̂ ∗1 ...V̂ ∗B}. (3)
Bootstrap takes the empirical distribution of {V̂ ∗1 ...V̂ ∗B} as an
approximation to N(µV̂ , σ

2
V̂

), so we estimate σV̂ by Eq. 11.

µV̂ =
∑

V̂ ∗i /B , σ2
V̂ =

∑
(V̂ ∗i − µV̂ )2/(B − 1) (11)

Configuration of |∆SA|. We terminate the query when the

MoE ε ≤ V̂ ·eb
1+eb

(Theorem 2). Otherwise, we update SA by
additional answers, i.e., SA = SA ∪ ∆SA, and continue the
estimation until we obtain a small enough ε. Intuitively, we
need a large |∆SA| when ε is large. Otherwise, a small |∆SA|
would be sufficient. To achieve the right balance, we present
an error-based method that automatically configures |∆SA|.

Consider an MoE ε > V̂ ·eb
1+eb

. We use ε/ V̂ ·eb1+eb
to denote how

far ε is away from the desired value V̂ ·eb
1+eb

. The larger ε/ V̂ ·eb1+eb
is, the more answers that ∆SA requires. Ideally, if we can
reduce ε to a new ε′ by at least ε/ V̂ ·eb1+eb

times, we can satisfy

ε′ ≤ V̂ ·eb
1+eb

. According to Eq. 10, reducing ε by ε/ V̂ ·eb1+eb
times

is equivalent to reducing σV̂ by ε/ V̂ ·eb1+eb
times. Since σV̂ =

σV√
N

according to CLT, where σV is the standard deviation of

the population, we say that reducing σV̂ by ε/ V̂ ·eb1+eb
times is

equivalent to increasing N by (ε/ V̂ ·eb1+eb
)2 times. In summary,

we can increase N by (ε/ V̂ ·eb1+eb
)2 times to reduce ε by ε/ V̂ ·eb1+eb

times. Hence, we derive |∆SA| as follows.

|∆SA| = t · [N · (ε/ V̂ · eb
1 + eb

)2]m − t ·Nm

= |SA| · [(ε/
V̂ · eb
1 + eb

)2m − 1]

(12)

Example 5: Suppose we have a CI = V̂ ± ε with V̂ =
578 and ε = 6.5, by a sample of size |SA| = 100. If we set
the scale factor m = 0.6 and error bound eb = 0.01, then we
need |∆SA| = 100 · ((6.5/ 578·0.01

1.01 )2·0.6 − 1) ≈ 16 additional
answers, which is much smaller than |SA|.
Interactive refinement of eb. In an interactive scenario, a
user may vary eb in runtime, that is, she gradually reduces
eb to achieve more accurate results. We can quickly obtain
a new approximate result with a small additional overhead,
because our sample size configuration method can sense the
variation of eb and update SA appropriately (Eq. 12). This can
be very beneficial to reduce overhead caused by oversampling.
Remarks. The empirical results (§VII-D) show that the de-
sired sample ratio λ = 0.3 is enough to achieve a good result
for t ≥ 3, m=0.6, and B ≥ 50 as recommended in [64].
D. Putting All Together

We present the entire algorithm in Algorithm 2, including
an offline KG embedding phase to generate a predicate vector
space E (Line 1) and an online “sampling-estimation” phase
to obtain an approximate result with an accuracy guarantee
(Lines 2-14). In the online phase, given an aggregate query

Algorithm 2: Approximate Aggregate Query on KGs
Data: A KG G, an aggregate query AQG = (Q, fa), a user-input

error bound eb and a confidence level 1− α
Result: approximate aggregate result with a CI = V̂ ± ε

1 E = KG Embedding Model(G);
2 π = randomWalk(G, E); /* §IV-A2(2) */
3 SA = collectSample(G, π, Q.qt); /* §IV-A2(3) */
4 while true do
5 S+

A = correctnessValidate(G, SA, π, τ ); /* §IV-B2 */
6 V̂ = estimate(S+

A); /* §IV-B1 */
7 ε = getMoE(S+

A , 1− α); /* §IV-C */
8 if ε ≤ V̂ · eb/(1 + eb) then
9 break; /* §IV-C: Theorem 2 */

10 else
11 |∆SA| = configSampleSize(ε,V̂ , eb); /* §IV-C */
12 ∆SA = collectSample(G, π, Q.qt);
13 SA = SA ∪∆SA;

14 return CI = V̂ ± ε;

AQG = (Q, fa), we do the following (Lines 2-3): (1) Conduct
a semantic-aware random walk on G (within n-hops) to reach
a stationary distribution π by using E, and (2) collect a
random sample SA according to π. Next, we validate the
correctness of each answer in SA to obtain correct answers
S+
A ⊆ SA (Line 5) and estimate the approximate result V̂ by

applying the proposed unbiased (or consistent) estimators on
S+
A (Line 6). After that, we compute the MoE ε of a confidence

interval CI = V̂ ± ε at the confidence level 1 − α (Line 7).
Finally, we check the termination condition (Theorem 2) and
return V̂ ± ε when ε ≤ V̂ ·eb

1+eb
(Lines 8-9 & 14). Otherwise,

we enlarge SA with an appropriate sample size |∆SA|, and
repeat above steps to continuously refine V̂ ±ε (Lines 11-13).
Remarks. The total time of our method consists of sampling
time (Ts) and estimation time (Te). We get Ts = O(|EG′ | +
Nws + |SA|), where |EG′ | is the average number of edges in
the scope of our random walk and we compute the transition
probability for each such edge, Nws is the average walk
steps required for random walk convergence (Nws ≤ 500 in
practice), and |SA| is the initial sample size. Next, we get
Te = O(Ne ·(|SA|+ |S+

A|+ |∆SA|)), where Ne is the average
iterations till termination condition (Theorem 2) is satisfied
(Ne ≤ 10 in practice). In each iteration, we validate the
correctness of |SA| answers (Line 5), estimate based on |S+

A|
correct answers (Lines 6-7), and include |∆SA| additional
answers to refine the approximate result (Lines 11-13).

V. EXTENSIONS

A. Aggregate Queries with Filters and GROUP-BY

Queries with filters. We define queries with filters as follows.
Definition 6: AQG with filters. An aggregate query with

filters is defined as AQFG = (Q,
⋃n
i=1 Li ≤ bi ≤ Ui, fa),

where (1)
⋃n
i=1 Li ≤ bi ≤ Ui is a set of filters (or ranges),

and (2) for each filter, the attribute bi of each answer to Q
must be between a lower (Li) and an upper (Ui) bound.

Example 6: Given a query: “Find the average price of cars
produced in Germany with a fuel economy between 25 and 30
MPG”, we can form the AQFG of this query by adding a filter
25≤ fuel economy ≤30 on the aggregate query in Figure 2.



TABLE III: Statistics of our datasets
Datasets DBpedia Freebase YAGO2

#Nodes 4,521,912 5,706,539 7,308,072
# Edges 15,045,801 48,724,743 36,624,106

# Node-Types 359 11,666 6,543
# Edge-Predicates 676 5118 101

We support AQFG by adding a filter operation in the cor-
rectness validation (§IV-B2): only the answer uti satisfying the
filter condition and its semantic similarity si ≥ τ is a correct
answer, i.e., c(uti) = (L ≤ uti.b ≤ U && si ≥ τ)?1 : 0.
Queries with GROUP-BY. We can also support queries with
GROUP-BY to return answers in groups. For example, “How
many Spanish soccer players of each age group are there?”.
When GROUP-BY is applied on the query node that serves as
a target node, we only need to divide the collected sample of
soccer players into different groups based on their ages, then
we estimate and return the approximate result for each group.

B. Aggregate Queries with Different Shapes

Users generally form complex queries with different shaped
query graphs, e.g., chain, star, cycle, and flower shapes [17].
Due to the page limitations, we refer to our full version
[58] for answering chain-shaped queries. Next, we adopt
“decomposition-assembly” framework [13], [20] to support
queries with other shapes: (1) We decompose a complex query
into a set of simple or chain-shaped queries {Q1, ..., Qn}
(Def. 3) that share the same target entity, (2) we collect a
random sample SiA for each Qi, (3) we use the intersection
SA =

⋂n
i=1 S

i
A as the random sample for the original complex

query, and (4) we iteratively estimate the approximate result
based on SA until we obtain an accurate enough result.

VI. RELATED WORK

Online aggregation. Online aggregation (OLA) was first pro-
posed in [38], which is a sampling-based technology to return
approximate aggregate results on relational data. Much follow-
up work has continued over the years, including (1) OLA
over joins, group-by [34], [66]–[71], (2) OLA for distributed
environments [72]–[77], and (3) multi queries optimization for
OLA [37], [78]. None of them can be deployed directly to
answer aggregate queries on KGs, because a KG’s schema-
flexible nature is different from relational data. So, we design a
new semantic-aware sampling suitable for KGs, and unbiased
(or consistent) estimators for the nonuniform sample.
Graph query on knowledge graphs. Graph matching is
widely used for querying KGs [8], [12], [13], [18], [20]–[22],
[26]–[28], [79]–[81]. They do not consider aggregate queries,
except [22], [25], [82]–[84]. Since [22], [25], [82]–[84] answer
aggregate queries based on the factoid queries (often via
SPARQL aggregate queries), they suffer from the issues men-
tioned in §I. We propose a novel “sampling-estimation” model
to answer aggregate queries more effectively and efficiently.
Aggregate query on knowledge graphs. Recently, [85] con-
siders aggregate queries on knowledge graphs: It collects can-
didate entities via link prediction, and computes the aggregate
result based on them. Unlike ours, it does not support the edge-
to-path mapping based on semantic similarity, and thus reports

lower-quality answers (§VII). In [85], the user cannot specify
the relative error bound and confidence level, and can neither
update them interactively. Finally, unlike our extensions, [85]
performs aggregation only for simple queries.

VII. EXPERIMENTAL RESULTS

We evaluate (1) effectiveness and efficiency for simple and
complex queries (§VII-B), (2) effect of each step (§VII-C), and
(3) interactive performance and parameter sensitivity (§VII-D).
Our code [86] were implemented in Java1.8 and run on a
2.1GHZ, 64GB memory AMD-6272 server (CentOS Linux).

A. Environment Setup

Datasets. We used three real-world datasets (Table III).
(1) DBpedia [3] is an open-domain KG constructed from
Wikipedia. (2) Freebase [5] is a KG harvested from many in-
dividual, user-submitted wiki contributions. Since we assume
that each entity has a name, we used a Freebase-Wikipedia
mapping file [87] to filter 5.7M entities with names from
Wikipedia. (3) YAGO2 [4] is a KG with information from the
Wikipedia, WordNet, and GeoNames. We used the CORE por-
tion of YAGO as our dataset. Since we focused on aggregate
queries, we complemented the numerical attributes of entities
via web crawling. For example, we added attributes, e.g., price,
horsepower, etc. (from edmunds.com) to automobiles, added
age, transfer value, etc. (from sofifa.com) to soccer players,
and added ratings, box office, etc. (from IMDB) to movies.
Query workload. We tested both benchmark and synthetic
queries. Table IV shows 10 examples out of 400 queries.
(1) QALD-4 [16] is a benchmark for factoid queries on
DBpedia. We selected factoid queries from QALD-4 as seeds
to form COUNT, AVG, and SUM queries through a simple
modification (e.g., Q1-Q2). For instance, we changed “Find all
cars produced in Germany.” to “How many cars are produced
in Germany?” (Q1). We added filters and GROUP-BY to these
queries to form more queries (e.g., Q3-Q4). (2) WebQuestions
[88] is a benchmark for Freebase. We applied the same method
on it to form different queries (e.g., Q5-Q6). (3) Synthetic
queries were generated to evaluate our approach on YAGO2
(e.g., Q7-Q8). Moreover, we generated complex queries with
different shapes (e.g., Q9-Q10). From [17], most of real-world
queries have small number of edges, e.g., 73.8% and 81.2% of
queries for DBpedia have edges≤ 2 and 4, respectively. So, we
formed 2-hop chain-shaped queries (e.g., Q10) and used them
together with simple queries to form queries with other shapes.
In Table IV, we show each query’s selectivity, defined as the
percentage of correct answers over all candidate answers. The
average selectivity of all queries is 6.39%, whereas the largest
selectivity of a query is around 70%. Thus, our approach can
support both high and low-selectivity queries.
Metrics. We run each query for 5 times, and used average rel-
ative error and average response time as the metrics for effec-
tiveness and efficiency, respectively. Initially, 38.5% (154/400)
of our queries, which were formed from seed queries of
QALD-4 and WebQuestions (e.g., Q1-Q3, Q5-Q6 in Table IV),
already had human-annotated ground truth. For the remaining



TABLE IV: Ten query examples out of all queries (10/400) that we used in §VII
QID Queries Category & selectivity (%) Aggregate function fa
Q1 How many cars are produced in Germany? Simple, 3.01% COUNT(*)
Q2 What’s the average price of cars that are produced in Germany? Simple, 3.01% AVG(price)
Q3 What’s the average price of cars produced in Germany with a fuel economy between 25MPG and 30MPG? Simple+Filter, 0.51% AVG(price)
Q4 How many football clubs are there in each country? Simple+GROUP-BY COUNT(*)
Q5 How many languages are spoken in Nigeria? Simple, 69.59% COUNT(*)
Q6 What’s the total box office of the movies that were directed by Steven Spielberg? Simple, 0.05% SUM(box office)
Q7 How many museums are there in England? Simple, 3.23% COUNT(*)
Q8 What’s the average population of China’s cities? Simple, 2.91% AVG(population)
Q9 How many soccer players were born in Spain and played for Barcelona FC? Star, 0.12% COUNT(*)
Q10 How many cars are designed by German designers? Chain, 2.91% COUNT(*)

TABLE V: Average Jaccard similarity (AJS) between the human-
annotated and τ -relevant correct answers and its variance (Var)

Threshold τ 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

DBpedia-AJS 0.64 0.71 0.74 0.78 0.88 0.95 0.83 0.64
DBpedia-Var 0.084 0.080 0.079 0.043 0.023 0.011 0.121 0.184
Freebase-AJS 0.68 0.74 0.80 0.85 0.96 0.91 0.82 0.70
Freebase-Var 0.227 0.215 0.208 0.117 0.061 0.029 0.308 0.502
Yago2-AJS 0.52 0.63 0.70 0.82 0.93 0.88 0.77 0.59
Yago2-Var 0.042 0.046 0.045 0.025 0.013 0.015 0.66 0.108

246 queries, we conducted crowdsourcing with the Baidu
Data Crowdsoursing Platform (https://zhongbao.baidu.com) to
obtain human-annotated ground truth. For details, see our
extended version [58]. In summary, we have human-annotated
ground truth for all our queries. In our experiments, we
measured the effectiveness in two ways for all our queries:
based on human-annotated ground truth (HA-GT) and seman-
tic similarity-based ground truth (τ -GT).
Comparing methods. We compared our approach with recent
works on KG search: (1) EAQ [85] is state-of-the-art work
that supports aggregate queries on KGs: It collects candidate
entities via link prediction and computes aggregate results only
for simple queries. (2) SGQ [13] finds the top-k semantically
similar answers to a query graph. SGQ supports incremental
query processing: when k is increased, additional answers
can be retrieved incrementally, without finding all the top-k
answers from ground. To find all correct answers, we initialize
k=50 and increase k in steps of 50 till all correct answers are
included. Notice that in this process, some incorrect answers
can also get included in the last step. (3) GraB [21] is
an index-free graph query based on structural similarity. (4)
QGA [24] is a keyword-based KG search method. We also
compared with one RDF store (5) JENA [89] and a graph DB
(6) Neo4j [90], both supporting SPARQL queries. We also
compared with (7) SSB provided in §III. Since (2)-(4) process
factoid queries, we extended them by adding an additional
aggregate operation after achieving the factoid query answers.
Moreover, (7) serves as a baseline method, we demonstrate
our accuracy vs. efficiency trade-offs by comparing with (7),
thereby showing the usefulness of “sampling-estimation”.
Parameters. The default configuration is: error bound eb =
1%, confidence level 1−α = 95%, repeat factor r = 3, desired
sample ratio λ = 0.3, n = 3 of n-bounded subgraph, similarity
threshold τ from Table V, and TransE [44] for KG embedding.
Remarks. (1) In real applications, HA-GT may not be avail-
able for all queries. Alternately, a domain expert can set τ
according to her experience and based on available human-
annotations for a limited number of queries, and then use
our solution to retrieve a good approximation to both τ -GT
(Table VI) and HA-GT (Table VII) over all queries. The
key is whether we can find an appropriate τ that makes
the human-annotated correct answers and τ -relevant correct

answers highly consistent. (2) Table V shows the average
Jaccard similarity (AJS) between the τ -relevant (with different
τ ) and human-annotated correct answers and the variance (Var)
of Jaccard similarity, considering 35% of all queries over three
datasets (with TransE embedding). Though we obtained HA-
GT for all queries with additional crowdsourcing, in Table
V we use HA-GT from 35% of all queries and find the
appropriate τ for each dataset. This is to demonstrate that
the optimal τ obtained based on available human-annotations
for a limited number of queries on a dataset, is still sufficient
to retrieve a good approximation to both τ -GT and HA-GT
for many other queries on that dataset. Intuitively, if we have
a high-quality KG embedding model, then we can distinguish
the implicit semantics of predicates well; hence, we can also
accurately represent the semantics of different paths. So, it is
very likely that the ground truths HA-GT and τ -GT would be
similar for an appropriate value of τ . (3) The optimal τ for
different datasets are different; though roughly in the range
of 0.8-0.85, we get a relatively higher AJS and smaller Var.
For example, in DBpedia, AJS is the highest (0.95) and Var
is the smallest (0.011) when τ = 0.85, implying that the
difference of each query’s τ -relevant correct answers to its
human annotated correct answers is small. In this case, our
solution can get a good approximation to HA-GT (Table VII),
because HA-GT and τ -GT are similar when τ = 0.85, and our
solution can achieve a good approximation to τ -GT (Table VI).

B. Effectiveness and Efficiency Evaluation

Effectiveness. Table VI and VII show the relative error based
on τ -GT (with the optimized configuration of τ from Table
V) and HA-GT, respectively, for all queries having different
graph shapes. Our solution achieves a good approximation to
τ -GT (Table VI). In Table VI, for all datasets, our solution
has two orders of magnitude less relative error on average
than other methods. The reasons are: (1) We collected the
random sample SA by considering the semantic similarity via
“edge-to-path” mapping in the KG, so that we could find more
correct answers than other graph query methods (EAQ, GraB,
QGA) that do not consider semantic similarity. (2) Since we
provided a specific SPARQL expression as input to both JENA
and Neo4j, they only found those correct answers matching
exactly with the graph schema of the input SPARQL query, and
other correct answers having different schemas were ignored.
(3) Our approach continues to refine the approximate result
by increasing SA until the relative error is bounded by the
user-specified input error bound eb. We show a case study for
Q1, Q2, and Q6 in Table IX, where the approximate results
are refined iteratively until all relative errors are bounded by
eb = 1%. (4) For the top-k based incremental method SGQ,



TABLE VI: Effectiveness: relative error (%) for different query shapes over all datasets and all queries (τ -relevant ground truth)
Method DBpedia Freebase Yago2

Simple Chain Star Cycle Flower Simple Chain Star Cycle Flower Simple Chain Star Cycle Flower

Ours 0.84 0.33 1.65 0.72 0.95 0.86 0.62 0.91 0.71 0.98 0.54 0.85 0.30 0.75 0.92
EAQ 20.02 - - - - 17.74 - - - - 14.72 - - - -
GraB 8.08 29.10 18.69 19.24 16.38 12.84 18.47 18.91 23.13 18.87 8.57 19.23 17.53 24.61 12.87
QGA 17.94 31.37 38.49 24.17 31.01 34.63 29.68 34.12 21.76 20.51 19.46 22.38 32.21 42.19 32.54
SGQ 10.67 12.08 16.13 9.98 12.11 6.96 5.54 14.74 13.15 15.61 7.97 14.03 10.01 15.77 8.52
JENA 16.60 29.37 42.03 23.09 21.32 28.17 29.68 34.77 22.76 21.24 11.30 26.38 27.38 41.03 39.47

Virtuoso 16.60 29.37 42.03 23.09 21.32 28.17 29.68 34.77 22.76 21.24 11.30 26.38 27.38 41.03 39.47

SSB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE VII: Effectiveness: relative error (%) for different query shapes over all datasets and all queries (human-annotated ground truth)
Method DBpedia Freebase Yago2

Simple Chain Star Cycle Flower Simple Chain Star Cycle Flower Simple Chain Star Cycle Flower

Ours 0.99 0.84 1.10 1.19 0.80 0.96 1.38 1.02 0.98 1.60 0.57 1.30 0.86 0.92 1.04
EAQ 21.14 - - - - 17.74 - - - - 14.72 - - - -
GraB 7.31 29.38 18.29 18.72 16.06 11.41 17.74 18.52 22.97 20.60 7.62 20.56 17.16 24.58 14.02
QGA 19.01 32.90 40.52 25.58 32.45 34.65 29.65 34.68 21.53 22.27 18.94 23.81 32.70 43.50 34.35
SGQ 9.97 12.93 17.16 9.08 11.64 5.30 4.33 14.16 12.54 17.28 7.01 13.19 9.35 15.31 9.63
JENA 17.62 30.79 44.31 22.77 21.22 27.66 29.65 35.39 22.58 23.02 12.40 26.19 27.54 42.23 41.69

Virtuoso 17.62 30.79 44.31 22.77 21.22 27.66 29.65 35.39 22.58 23.02 12.40 26.19 27.54 42.23 41.69

SSB 0.91 0.81 0.92 1.10 0.73 1.83 1.32 0.93 0.91 1.70 1.11 1.21 0.83 0.85 1.13

TABLE VIII: Efficiency: average response time (ms) for different query shapes over all datasets and all queries
Method DBpedia Freebase Yago2

Simple Chain Star Cycle Flower Simple Chain Star Cycle Flower Simple Chain Star Cycle Flower

Ours 368.0 590.63 735.1 841.9 1518.3 419.4 673.1 905.8 1037.7 1871.1 562.5 902.8 1154.4 1322.4 2384.6
EAQ 4525.3 - - - - 2711.0 - - - - 4267.4 - - - -
GraB 922.6 1541.3 1918.1 1727.4 3114.9 607.2 1014.5 1471.5 1325.2 2389.6 1449.0 2420.9 3511.5 3162.4 5702.5
QGA 1511.0 2120.7 2239.1 3023.3 5451.6 1088.5 1527.8 2173.3 2489.7 4489.4 2369.8 3326.1 2703.1 3096.6 5583.8
SGQ 817.4 1033.2 1285.7 1157.9 2087.9 621.9 786.1 1174.5 1057.8 1907.4 1392.5 1760.1 2630.2 2368.5 4271.1
JENA 1197.9 1681.4 2546.2 2916.9 5259.8 1051.4 1475.7 1606.1 1839.9 3317.7 1505.7 2113.3 2702.2 3095.5 5581.9

Virtuoso 1212.2 1701.4 2550.9 2922.2 5269.4 1074.8 1508.5 1634.6 1872.5 3376.6 1545.9 2169.7 2894.4 3315.7 5979.1

SSB 6675.8 7547.9 9577.6 10972.3 20578.6 2264.0 4766.5 10003.1 11459.7 20663.5 5231.1 6627.6 9624.5 10471.2 19278.6

its relative error > 0. This is because we increased k in steps
of 50 till all correct answers were included, in this process,
some incorrect answers were included in the last step.

Table VII shows the effectiveness results w.r.t. HA-GT for
all queries. By setting an appropriate τ , our solution can get a
good approximation to HA-GT, because HA-GT and τ -GT are
similar for this τ . However, more results have slightly larger
relative error than the predefined error bound (eb = 1%). This
is reasonable, since we provide an accuracy guarantee for τ -
GT, and not directly for HA-GT; though HA-GT and τ -GT
are similar for a specific τ , they may not be exactly same.
Moreover, if we do not select τ appropriately, the relative
error w.r.t. HA-GT could be affected. We show the effect of
τ w.r.t. HA-GT in §VII-D (Figure 5(c) (right)).

Table XI shows the effectiveness results w.r.t. HA-GT and τ -
GT for queries with filters, GROUP-BY, and MAX/MIN. For
filters and GROUP-BY, we achieve two orders of magnitude
less error on average than others, because we offer a good
accuracy guarantee with confidence interval. For MAX/MIN,
though we cannot provide accuracy guarantees, we can support
them by returning the MAX/MIN answers of the collected
sample. As more sample is collected, the result gets closer
to the exact one. We configured a fix sample size (5% of
the candidate answers) and found that the exact result can be
included in the sample after 8 rounds on average. We show
the result after 4 rounds, which is already better than others.
Efficiency. The runtime of our method is independent of which
ground truth is used. Specifically, when the query terminates,
we use the approximate result to compute the relative error
w.r.t. HA-GT and τ -GT to obtain different effectiveness re-
sults, while the query time is the same. Hence, we report
the efficiency results in Tables VIII and X, and find that our
method requires up to an order of magnitude less response
time than others, because we apply the “sampling-estimation”
model that does not rely on the factoid query. Hence, we

TABLE IX: Case study (τ -GT for Q1, Q2,
and Q6 are 596, $44,072, and $7.56B)

QID Approximate result
RD V̂ MoE ε error %

Q1 1 578.55 8.51 2.93
2 599.97 5.99 0.67

Q2 1 46,409 1,265 5.30
2 44,504 435 0.98

Q6
1 7.07 0.59 6.48
2 7.89 0.13 4.37
3 7.53 0.071 0.40

TABLE X: Efficiency for var-
ious operators (DBpedia)

Method Efficiency (sec)
Filter GROUP MAX/

-BY MIN
Ours 0.43 31.67 0.47
EAQ - - 2.68
GraB 1.10 - 0.80
QGA 1.41 - 1.28
SGQ 0.73 - 0.64
JENA 0.70 95.76 1.07

Virtuoso 0.72 94.67 0.97
SSB 0.78 54.75 8.17

TABLE XI: Effectiveness for various operators (DBpedia)

Method Relative error (%) w.r.t. τ -GT Relative error (%) w.r.t. HA-GT
Filter GROUP-BY MAX/MIN Filter GROUP-BY MAX/MIN

Ours 0.58 0.75 5.68 0.71 1.13 6.33
EAQ - - 10.29 - - 10.92
GraB 21.49 - 10.02 20.94 - 10.65
QGA 45.55 - 11.23 46.95 - 11.85
SGQ 18.42 - 6.14 17.71 - 6.79
JENA 46.18 16.75 12.59 48.98 16.30 13.21

Virtuoso 46.18 16.75 12.59 48.98 16.30 13.21
SSB 0 0 0 1.29 1.06 1.14

do not need to wait a long time for the graph query results,
thereby improving the efficiency. The query time increases as
the graph shape gets more complex. This is because we use
the “decomposition-assembly” framework to answer complex
queries – with more sub-queries, more time is required for
sampling and correctness validation. We show the detailed
efficiency results of our three steps on DBpedia in Table XII:
semantic-aware sampling (S1), approximate estimation (S2),
and accuracy guarantee (S3). S1 is the most time-consuming
step and S3 is the fastest step, because we must wait for
the more time-consuming random walk to converge before
collecting the sample. In S2, we validate the correctness of
the collected sample, this costs more time than that for S3.

TABLE XII: Detailed efficiency re-
sults (ms) over (DBpedia, simple)

Operator S1 S2 S3
COUNT 246.0 19.6 6.2

AVG 248.2 104.1 42.4
SUM 277.1 108.9 51.5

TABLE XIII: Effect of KG embedding
models (DBpedia, simple, HA-GT)

Model Embed Mem Relative
time (h) (GB) error(%)

TransE 6.63 8.8 0.99
TransD 10.06 9.73 0.83
TransH 7.82 9.35 1.07

RESCAL ≈1day 50 5.46
SE ≈1day 55 3.38
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Fig. 4: Effect of each step (S1-S3) on effectiveness and efficiency (DBpedia, simple, HA-GT)
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Fig. 5: (a) Interactive performance; (b)-(c) Effect of different parameters on effectiveness and efficiency (DBpedia, simple, HA-GT)

C. Effect of Each Step on the Performance

Semantic-aware sampling (S1). We implemented other two
versions of S1: both topology-aware samplings (CNARW [42]
and Node2Vec [43]). Figure 4(a) shows that the relative errors
are reduced by at least 8X, 6X, and 10X for COUNT, AVG,
and SUM through our semantic-aware sampling. Our method
is also more efficient, because it converges faster than others.
Approximate estimation (S2). We used a correctness valida-
tion method in S2 to identify each sampled answer’s correct-
ness. We show the effectiveness result w/ or w/o correctness
validation in Figure 4(b) (left). The relative errors are reduced
by 7X, 6X, and 14X for COUNT, AVG, and SUM. However
it increases the response time (Figure 4(b) (right)), though is
acceptable considering the improvement in accuracy.
Accuracy guarantee (S3). We applied an error-based method
to automatically configure |∆SA| in S3. Different to this,
approximate query processing methods on relations increase
sample size at a fixed rate, e.g., 50. In Figure 4(c), the relative
errors are similar for both, but ours offers better efficiency
(improved by 1.3X on average), as we can automatically
configure |∆SA|, avoiding oversampling or undersampling.

D. Interactive Performance and Parameter Sensitivity

We studied our interactive approach’s runtime by varying
the error bound eb during query processing. We initialize
eb = 5%. Instead of terminating the query when ε ≤ V̂ ·eb

1+eb
,

we decrease eb by 1% to continue processing and report the
incremental response time in Figure 5(a). We require less than
100 ms of additional time to meet a new eb till eb ≥ 2%, which
is efficient. For a more stringent error bound, e.g., eb = 1%,
we need 100∼300 ms to re-satisfy the termination condition.
KG embedding. We measure accuracy based on HA-GT
due to different KG embedding (Table XIII): translation-
based models (TransE [44], TransD [45], TransH [46]), tensor
factorization-based model RESCAL [91], and relation-specific
projection-based model SE [92]. Unlike RESCAL and SE,
translation-based models preserve many important properties
such as antisymmetry, inversion, and composition [93], which
are critical for the datasets and queries that we tested, so
these models can well-represent the semantics of predicates
and paths, and we find a good τ which makes τ -GT obtained
from these models similar to HA-GT. Therefore, translation-

based models perform better than others. We find that differ-
ent translation-based models (TransE, TransD, TransH) have
small differences in accuracy. TransE is also more efficient
in embedding time and memory (Table XIII). These results
demonstrate that a high-quality KG embedding model is
important to our solution when we use HA-GT.
n-bounded subgraph search. The relative error decreases as
n increases in Figure 5(b). As most correct answers belong to
3-bounded subgraph, the reduction of relative error gets stable
when n ≥ 3. The run time increases as n increases, since
random walks need more time to converge on a larger graph.
Semantic similarity threshold τ . We achieve a good approx-
imate result (error < 1.5%) w.r.t. τ -GT (Fig. 5(c)(left)), as
we sample answers with higher semantic similarity (§IV-A),
validate answers’ correctness (§IV-B2), and iteratively refine
the approximate result until we get an accurate enough result
(§IV-C). For HA-GT, we should carefully select τ , we achieve
the smallest relative error when τ = 0.85 (Fig. 5(c)(right)), as
τ -GT and HA-GT are quite similar with this τ (Table V).

Sensitivity results w.r.t. confidence level, repeat factor, and
the desired sample ratio are given in our full version [58].

VIII. CONCLUSIONS

We proposed a “sampling-estimation” model to answer
aggregate queries on KGs effectively and efficiently. We first
presented a semantic-aware sampling to collect a high-quality
sample from a KG. Then, we proposed two unbiased estima-
tors for COUNT, SUM, and a consistent estimator for AVG.
An effective accuracy guarantee was provided through a tight
confidence interval and user-input error bound. We extended
our solution for iterative improvement of accuracy, complex
queries with filters, GROUP-BY, and different shapes. Exper-
imental results on real datasets confirm the effectiveness and
efficiency of our approach. In future, we shall derive accuracy
guarantees for extreme functions (e.g., MAX, MIN).
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