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Abstract—Ethereum, currently the most actively-used and the
second-largest blockchain platform, consists of a heterogeneous
ecosystem, cohabited by human users, smart contracts (au-
tonomous agents), ether (native cryptocurrency), tokens (digital
assets), dApps (decentralized applications), and DeFi (decentral-
ized finance). These key actors in the Ethereum interact with
each other via transactions and contract calls. Given the highly
connected structure, graph-based modeling is an optimal tool
to analyze the data stored in Ethereum blockchain. Recently,
several research works performed graph analysis on the publicly
available Ethereum blockchain data to reveal insights into its
transactions and for important downstream tasks, e.g., cryptocur-
rency price prediction, address clustering, phishing scams and
counterfeit tokens detection. In this work, we conduct an in-depth
survey of the existing literature. We categorize them based on
publication years, venues, core ranking, and authors’ affiliations,
data usage and graphs construction, graph mining and machine
learning techniques employed, and the new insights derived
by them. We conclude by discussing our recommendations on
the future work. Our article will be useful to data scientists,
researchers, financial analysts, and blockchain enthusiasts.

Index Terms—blockchain, ethereum, network analysis

I. INTRODUCTION

A blockchain [1] is a distributed, digital ledger of records,
stored in a sequential order. Each record, called a block, is
time-stamped and is linked to the previous one; these blocks
are shared openly among its users to create an immutable
sequence of transactions. A blockchain can only be updated
by consensus among its users (either an open or a controlled
set of users), who participate in a peer-to-peer network. Thus,
a blockchain contains a secure, tamper-proof, and verifiable
record of every transaction ever validated in the system, and
is crucial in the trust economy of the future.

The Ethereum blockchain1, launched in July 2015, is
currently the most actively-used and the second-largest
blockchain platform, with market value2 grew to over 250
billion U.S. dollars in April 2021. Ethereum, hosting ether
(ETH), the second largest cryptocurrency by market capitaliza-
tion, is a public blockchain that keeps records of all Ethereum
related transactions. Ethereum supports decentralized applica-
tions (dApps) with its smart contracts, which are autonomous
agents that can execute complex code across a decentral-
ized network. Ethereum blockchain also permits creation and
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1ethereum.org/en/whitepaper/ github.com/ethereum/yellowpaper
2statista.com/statistics/807195/ethereum-market-capitalization-quarterly/

transaction of tokens, which are digital assets, through codes
defined in the respective smart contracts. Therefore, Ethereum
introduces a heterogeneous, financial ecosystem of humans
(users) and autonomous agents (smart contracts), who transact
using ether and various fungible (e.g., ERC20) and non-
fungible (e.g., ERC721) tokens (digital assets), and these are
recorded permanently in the blockchain ledger.

Public blockchain data are widely investigated in several
downstream applications including cryptocurrency price pre-
diction, address clustering, criminal usage detection, anti-
money-laundering, business transactions analysis, and thus
providing new means for financial data mining [2], [3], [4],
[5]. They are critical in emerging fields such as blockchain
intelligence3, blockchain social networks [6], and blockchain
search engines [7]. Data stored in a public blockchain can be
considered as big data (e.g., Ethereum archive nodes that store
a complete snapshot of the Ethereum blockchain, including
all the transaction records, take up to 4TB of space4), thus
data analytic methods can be applied to extract knowledge
hidden in the blockchain. Ethereum blockchain has processed
more than 1.1 million transactions per day in July 20215 and
contains a vast amount of heterogeneous interactions (e.g.,
user-to-user, user-to-contract, contract-to-user, and contract-
to-contract) across multiple layers (via external and internal
transactions, ether, tokens, dAapps, etc.) that can be modeled
as complex, dynamic, multi-layer networks [8], [9], [10]. In
this work, we conduct an in-depth survey of the existing
literature (i.e., 25 research papers published at peer-reviewed
conferences, journals, and workshops in the past five years)
that performed graph analysis of the Ethereum blockchain
data. We compare them based on publication years, venues,
core ranking, and authors’ affiliations, data usage and graphs
construction, graph mining and machine learning methods
used, and the new insights revealed by them.

Related work. Blockchain data analytics, also known as the
distributed ledger analytics (DLA), is an emerging field of
research. It deals with insights from transactions and other data
stored on public blockchains. For surveys and tutorials, we re-
fer to [11], [12], [2], [5], [3], [13]. They provide more generic
discussions on various blockchains, e.g., Bitcoin, Ethereum,

3blockchaingroup.io
4decrypt.co/24779/ethereum-archive-nodes-now-take-up-4-terabytes-of-space
5statista.com/statistics/730838/number-of-daily-cryptocurrency-transactions-by-type/



Monero, Zcash, Ripple, Iota, etc. Unlike ours, they are not
specific to Ethereum, for instance, none of them considered
all twenty five research papers that we survey. Different from
them, we provide a more in-depth study of the Ethereum
ecosystem (which is heterogeneous, cohabited by externally
owned accounts, smart contracts, ether, different categories of
tokens, external and internal transactions, dApps and DeFi),
data extraction tools, as well as several prominent research
papers published at peer-reviewed conferences, journals, and
workshops in the last five years that conducted graph analysis
of the Ethereum blockchain data.

Many works performed graph analysis and machine learning
with other blockchain data, such as Bitcoin [14], [15], [16],
[17], Litecoin [17], Monero [18], EOSIO [19], and Steem [20].
We do not survey them since we focus on Ethereum.

Our contributions and roadmap. Data on Ethereum
blockchain can be modeled as graphs of different formats:
static, dynamic, and historical snapshot graphs, directed and
weighted graphs, simple and multi-graphs, attributed and
multi-layer networks. They are critical in predicting frauds,
detecting phishing scams and counterfeit cryptocurrencies.
Therefore, graph-based modeling and mining of the Ethereum
data is an emerging area of research. While many graph
analysis works on the publicly available Ethereum blockchain
data have emerged, to the best of our knowledge, ours is the
first in-depth survey of the literature that conducted graph
analysis with the Ethereum blockchain data.

We first introduce Ethereum’s heterogeneous ecosystem
and data extraction tools (§II). We next discuss twenty five
research papers published at peer-reviewed journals, confer-
ences, and workshops based on their (a) publication venues,
years, categories, publishers, and authors’ affiliations (§III-A);
(b) data extraction methods, dataset durations, and the graphs
constructed (§III-B); (c) graph properties, topological data
analysis, machine learning methods investigated, and the tar-
get applications therein (§III-C). We conclude and discuss
future directions in §IV. Our classification and description of
data, models, applications, and future directions on Ethereum
blockchain are timely and critical – this will benefit data sci-
entists, machine learning practitioners, and financial analysts.

II. TAXONOMY AND THE ETHEREUM

Ethereum is a public blockchain permitting anyone to join
and use decentralized applications (dApps), created by devel-
opers, that run on the Ethereum Virtual Machine (EVM). EVM
can execute codes of arbitrary algorithmic complexity, making
Ethereum Turing complete [21]. Ethereum is a transaction-
based state machine, where the state is made up of accounts,
i.e., externally owned accounts (EOAs) and smart contract
code controlled accounts. Transfers of values (e.g., ether and
tokens transactions) and information (e.g., contract create, call,
or kill) between accounts cause transitions in the global state
of Ethereum, which are recorded in the blockchain.

We discuss the main components of the Ethereum in § II-A,
that are important for graphs creation, followed by existing
tools for Ethereum data extraction in § II-B.

A. Components of the Ethereum Blockchain

The key actors in the Ethereum ecosystem are as follows.
Ether. The native cryptocurrency of Ethereum is called the
ether, or ETH, that is transferred between user accounts. Ether
is also paid to run transactions, called transaction fees or gas,
for covering the costs of computing power.
Accounts. Ethereum has two types of accounts: Externally
owned accounts (EOAs) are accounts controlled by private
keys. If a participant own the private key of an EOA, the
participant has the ability to send ether and messages from
it. Smart contract code controlled accounts have their own
code, and are controlled by the code.

Ethereum uses the account-based transaction model [13]
that represents ether as balances within accounts, similar to
bank accounts. Every account has an address, balance, storage,
and code-space (in EOAs, both code-space and storage are
empty) for interacting and transacting with other accounts. Ev-
ery account has a publicly viewable nonce that is incremented
at every transaction. If there are two transactions referring
to the same account with the same nonce, then only the
first one will be validated and the second one is marked as
double spending. Also, a transaction is validated if the sending
account has enough balance to pay for it.

Ethereum accounts can be of different categories, such
as miners, exchanges, smart contracts for tokens, gambling
games, etc. Past work [22], [23] employed various heuristic
and machine learning methods to cluster Ethereum accounts
and found entities that likely control multiple accounts.
Smart contracts. A smart contract is a program, usually
written in Solidity or Vyper – Javascript and Python-like
languages, respectively, and compiled into JVM bytecode, that
runs on the Ethereum blockchain. A smart contract is deployed
to a specific address on the blockchain, and constitutes a
collection of code (for multiple functions) and data (its state).
Smart contracts can define rules and automatically enforce
them via the code. User accounts interact with a smart contract
by transactions that execute a function defined on the contract.
Smart contracts can also call (or, kill) each other, even itself,
if processing a transaction requires some functionality within
the other or in the same contract. Smart contracts can react to
transactions, but cannot initiate them [24].

A smart contract can be an application, e.g., defining a
token. A contract can also be a building block of a multi-tier
application, such as decentralized finance. Based on an ex-
ploratory study [25], about 42% highly-active smart contracts
are related to transferring, selling, and distributing tokens.
Transactions. A transaction, initiated by an EOA, transfers
Ethereum-based assets (e.g., ETH, tokens) from one address
to another. They can be broadly characterized into three classes
(not exclusive). Regular, or external transaction denotes a
transaction with the sender address being an EOA. Internal
transaction refers to a transfer that occurs when the sender ad-
dress is a smart contract, e.g., a smart contract calling another
smart contract or an EOA. Token transfer is an event log
for transfer of tokens only. Token transfers can be considered
as internal transactions. Internal transactions are not broadcast
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Fig. 1: Publication venues, years, categories, and affiliations of our surveyed 25 papers. (a) Number of papers vs. publication years. (b)
Number of papers in conference/workshop and journal categories, as well as at core ranking A∗ and A venues. (c) Number of papers based
on prominent publishers. (d) Number of papers based on authors’ institute affiliations; if a paper has co-authors with different institute
affiliations, the paper is counted under each such institution.

to the network in the form of regular transactions. A token
transfer is, in fact, an update of balances in the variables of the
token smart contract. Therefore, without running the EVM and
executing regular transactions, we cannot observe the internal
transactions, neither create the token transfer graph [13]. Using
Etherscan6, one can view the internal transactions and token
transfers associated with an address.
Tokens. Tokens are digital assets or access rights provided by
their issuers, managed by smart contracts and the blockchain
platform. A token’s smart contract specifies meta-attributes
about the token, including its symbol, total supply, decimals,
etc. Two most popular token standards on Ethereum are: (1)
ERC20, a standard interface for fungible (interchangeable)
tokens, such as voting tokens, staking tokens, or virtual
currencies, and (2) ERC721, a standard interface for non-
fungible tokens (NFTs), e.g., a deed for a song or an artwork.

ERC20 tokens are widely used in initial coin offering (ICO),
a crowdfunding process to raise funds in the cryptocurrency
market. The ERC721, on the other hand, introduces a standard
for NFTs, such tokens are unique and can have different values
than other tokens from the same smart contract. NFTs are used
to represent ownership of collectible items, songs, artworks,
access keys, lottery tickets, etc.
dApps and DeFi. A decentralized application (dapp) is built
on a decentralized peer-to-peer network that combines smart
contract(s) as backend and a frontend user interface, generally
implemented via HTML5, CSS, and web3.js. dApp authors
often submit their dapps to certain websites, e.g., State of
the dApps and DappRadar7 for advertisements. In Ethereum,
about 70% dapps have only one smart contract, and 90% dapps
have less than 3 smart contracts, while there are also some
dapps having more than 100 smart contracts [26]. Exchanges,
wallet, and games are the most popular dApp categories.

DeFi, or decentralized finance [27] are dApps for finan-
cial products and services, e.g., loans, savings, insurance,
exchanges, liquidity, lenders, and trading, powered by de-
centralised blockchain technologies such as Ethereum. DeFi
protocols are smart contracts that constitute a collection of
rules similar to physical financial institutions.
B. Tools for Ethereum Data Extraction

To get all historic Ethereum transactions, one can join
the Ethereum network of nodes through a client. Geth,

6info.etherscan.com/understanding-an-ethereum-transaction/
7stateofthedapps.com/ dappradar.com/

OpenEthereum, and Parity8 are popular software clients for
running a full node on Ethereum. The Geth client stores all
blockchain data on disk in LevelDB database using key-value
pairs. Alternatively, users can also interact with Ethereum
nodes via the web3 library using managed services, such as In-
fura and Quicknode9. In addition, some well-curated Ethereum
blockchain datasets have also been released, e.g., Google
BigQuery [28] and XBlock-ETH [29]. Ethereum blockchain
data on Google BigQuery are updated daily and are accessible
through an SQL interface. The ETL (extract-transform-load) of
Ethereum data converts them into convenient formats, such as
CSVs, relational databases, and graphs within a specified block
range [30]. Ethereum Query Language (EQL) [31] supports
SQL-like queries to retrieve information from the Ethereum
blockchain data.

III. SURVEY OF GRAPH ANALYSIS WITH ETHEREUM DATA

We survey twenty five research papers, published in the past
five years (2018-2022), that conducted graph analysis with the
Ethereum blockchain data. We do not include [32], [33], [34],
[35] since they were not published at peer-reviewed venues as
of the time of this writing.

A. Publication Venues and Affiliations

Figure 1 presents distributions of papers and co-authors
based on publication venues, years, categories, publishers,
and authors’ affiliations. Among 25 papers surveyed, 11 were
published in 2020, which is currently the maximum in a year
(Figure 1(a)). More papers were published at conferences and
workshops, than in journals. Eight papers were published at
core A∗ and A venues (Figure 1(b)). IEEE, ACM, and Springer
published majority of these papers (Figure 1(c)). Based on
authors’ affiliations, more papers and co-authors are from
China and USA (Figure 1(d)). Prominent research groups
working in this domain are from Sun Yat-sen University or
SYSU (China), MIT Media Lab (USA), Tel Aviv University
(Israel), Endor Ltd. (Israel), Nanyang Technological University
or NTU (Singapore), the Hong Kong Polytechnic University
(China), and the University of Manitoba (Canada). The
SYSU group also open-sourced several well-curated Ethereum
blockchain datasets [29].

8geth.ethereum.org/ openethereum.github.io/ parity.io/technologies/ethereum/
9infura.io/ quicknode.com/



TABLE I: Datasets and graphs in our surveyed papers.
paper data extraction data duration constructed graphs links to data and/or code
INFOCOM18 [36] client (Geth) 2015-2017 money flow graph, contract creation https://github.com/brokendragon

graph, contract invocation graph /Ethereum Graph Analysis
PLOS ONE18 [37] Etherscan APIs 2015-2017 transaction graph https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/XIXSPR
Complex Sys18 [38] client 2016-2018 (full) ERC20 tokens transfer graph not given
NTMS18 [39] client (Geth) 2015-2017 user-to-user, user-to-smart contract, not given

and smart contract deployment graphs
FC19 [40] client (Parity) 2015-2018 (individual) ERC20 token not given

transfer graphs
ICDMW19 [41] not given 2018-2019 Storj token transfer graph not given
Appl. Netw. Sci.19 [42] client 2015-2019 transaction graph not given
Inf. Sci.19 [43] client (Geth) 2015-2019 transaction graph not given
WWW20a [44] Google BigQuery 2015-2019 trace graph, contract graph, https://github.com/sgsourav

transaction graph, token graph /blockchain-network-analysis
SDM20 [45] client (Geth) 2015-2018 (individual) ERC20 token https://github.com/yitao416/EthereumCurves

transfer graphs
WWW20b [23] client (Parity) 2015-2019 ERC20 token creator, holder, http://xblock.pro/#/

and transfer graphs
Sci Rep20 [46] client 2016-2019 (individual) ERC20 token not given

transfer graphs
ACM Meas. Anal. Comput. Syst.20 [47] client (Geth) 2017-2020 ERC20 token creator, holder, and not given

transfer graphs for counterfeit tokens
Concurr. Comput. Pract. Exp.20 [48] Infura 2015-2020 transaction graph not given

web3 service
IEEE Trans. Circuits Syst.20 [49] Etherscan APIs 2015-2020 transaction graph https://github.com/lindan113/T-EDGE
Frontiers Phys.20 [50] Etherscan APIs 2015-2020 transaction graph https://github.com/lindan113/T-EDGE
J. Complex Networks20 [51] Etherscan APIs 2015-2018 transaction graph not given
Networking20 [9] client (Geth) 2015-2019 user-to-user, contract-to-contract, not given

and user-contract graphs
SBP-BRiMS20 [52] client 2016-2018 (full) ERC20 tokens transfer graph not given
WWW21 [8] Google BigQuery 2015-2019 trace graph, contract graph, https://github.com/LinZhao89

transaction graph, token graph /Ethereum-analysis
ECML PKDD21 [10] not given 2015-2020 (individual) token transfer graphs, https://github.com/tdagraphs

stacked as a multi-layer network
PAKDD21 [53] from [54] 2015-2019 transaction graph https://github.com/fpour/SigTran
ACM Trans. Internet Techn.21 [55] Etherscan APIs 2015-2020 transaction graph http://xblock.pro/#/
Blockchain21 [56] Google BigQuery 2015-2021 (individual) ERC721 token https://github.com/epfl-scistimm

transfer graphs /2021-IEEE-Blockchain
IEEE Trans. Syst. Man Cybern. Syst.22 [54] client 2015-2019 transaction graph http://xblock.pro/#/

B. Datasets and Graphs

Our surveyed papers vary based on data extraction methods,
dataset durations, and the graphs constructed (Table I).
Data extraction. 13 out of 25 papers employed software
clients such as Geth and Parity that run a full node on
Ethereum to collect all historic transactions. A few of the
surveyed papers used web3 services and Etherscan APIs for
data extraction [37], [48], [49], [51], [55]. Besides, [44], [8],
[56] used Google BigQuery and [53] xblock.pro/#/ to access
well-processed Ethereum blockchain datasets. 13 out of 25
papers provided links to their source code and/or datasets.
Constructed graphs. The graphs can be classified based on
transactions and token transfers; however, there are sufficient
varieties across different works. We introduce them below,
highlight similarities, differences, and summarize at the end.

• Chen et al. [36] studied the money flow graph (MFG),
smart contract creation graph (CCG), and the smart con-
tract invocation graph (CIG) based on transactions. MFG is
a weighted, directed graph denoting transfer of ether between
accounts (both EOAs and smart contract accounts). A weight
denotes the total amount of ether transferred along that edge
via one or more transactions. CCG, which deals with smart
contracts creation, is a forest having multiple trees. The root of
every tree is an EOA, other nodes of the tree are smart contract
accounts that are directly or indirectly created by that EOA. In
contrast, CIG is a weighted, directed graph, an edge indicates

an invocation of a smart contract, either by an EOA or by
another smart contract; the edge weight counts the number of
invocations, via one or more transactions.
• Liang et al. [37] constructed the transaction graph, which

is similar to the money flow graph (MFG) in [36]; however,
[37] studied it on a monthly basis. Nodes are added due to
creation of new accounts and are removed when they are no
longer involved in any transaction. New edges are inserted
for transactions between two previously unconnected accounts.
Edge weight is assigned based on the number of transactions,
and not considering the total amount of ether transferred.
• Somin et al. [38] created the full ERC20 tokens transfer

graph, with all ERC20 tokens transferred among EOAs. The
edges are directed, but unweighted, that is, the number of
transfers or the number of tokens transferred are not counted.
In [52], the authors built weekly versions of the above graph for
temporal analysis. Later, they studied about 1 500 individual
ERC20 token transfer graphs on weekly basis [46].
• Anoaica and Levard [39] analyzed user-to-user, user-

to-smart contract, and smart contract deployment graphs,
based on external transactions. The contract deployment graph
is similar to the contract creation graph in [36]; however, [39]
investigated these graphs on monthly, weekly, daily, and hourly
basis. Each edge is directed, and counts both the total number
of transactions and the amount of ether transferred.
• Victor and Lüders [40] studied 1 000 individual ERC20



TABLE II: Graph properties, machine learning (ML) methods, and target applications in our surveyed papers.
paper graph properties and ML methods target applications
INFOCOM18 [36] degree distribution, connected component, clustering coeff., assortativity inferring node identity, attack

Pearson coeff., PageRank forensics, anomaly detection
PLOS ONE18 [37] monthly change of degree distribution, assortativity, clustering coeff., network growth and dynamic

connected component characteristics
Complex Sys18 [38] degree distribution social behavior of ERC20 token transfer
NTMS18 [39] degree distribution, betweenness and Eigenvector centrality; internal activities on Ethereum blockchain,

their variations over time their temporal variations
FC19 [40] degree distribution, connected component, clustering coeff., assortativity, understanding of token networks

density, shortest path to exchanges
ICDMW19 [41] motifs count, LSTM token price prediction
Appl. Netw. Sci.19 [42] clustering coeff., assortativity, density, max. clique, structural properties, correlation between transaction

repetition ratio, rel. growth rate of monthly graphs graph properties with historical events and price
Inf. Sci.19 [43] degree distribution, connected component, shortest path, diameter insights into transaction relations

transaction volume distribution, bow-tie structure
WWW20a [44] degree distribution, centrality, density, reciprocity, assortativity study of user-to-user, user-to-contract,

connected component, core decomposition, clustering coeff., motif contract-to-user, and contract-to-contract
count, articulation points, adhesion, cohesion, diameter, shortest path networks, individual token sub-networks

SDM20 [45] persistent homology, functional data depth price changes of crypto-tokens
WWW20b [23] degree distribution, number of transactions study token ecosystem, are different tokens created/

PageRank, clustering coeff. controlled by the same entity, abnormal (fake)
transactions in decentralised exchanges

Sci Rep20 [46] degree distributions and their temporal variations dynamics of Ethereum tokens ecosystem
ACM Meas. Anal. Comput. Syst.20 [47] number of transactions study of counterfeit tokens on Ethereum
Concurr. Comput. Pract. Exp.20 [48] degree distribution, connected component, clustering coeff., study transactions in Ethereum ecosystem

shortest path, diameter
IEEE Trans. Circuits Syst.20 [49] degree distribution, temporal random walk-based graph temporal link prediction

representation learning
Frontiers Phys.20 [50] temporal random walk-based graph representation learning node classification (phishing vs. genuine)
J. Complex Networks20 [51] degree distribution, number of transactions, clustering coeff., temporal analysis of Ethereum

connected components, communities; their temporal variations transaction network
Networking20 [9] degree distribution, motifs counting, number of transactions, evolution of Ethereum

burstiness; their temporal variations
SBP-BRiMS20 [52] degree distributions and their temporal variations ERC20 network dynamics and predictive ability
WWW21 [8] network growth model, density, degree distribution, number of community continuation prediction,

transactions, reciprocity, assortativity, connected components, correlate anomalies with external real-life
core decomposition, clustering coeff. community detection; their incidents, find appropriate time granularity
temporal variations

ECML PKDD21 [10] clique persistent homology topological anomaly detection in
Ethereum (dynamic multi-layer networks)

PAKDD21 [53] random-walk-based graph representation learning Ethereum node classification (illicit vs. genuine)
ACM Trans. Internet Techn.21 [55] GCN-based graph representation learning Ethereum node classification (detect phishing scams)
Blockchain21 [56] degree distribution, shortest path, diameter, assortativity analysis of ERC721 transactions

PageRank, number of transactions; their temporal variations
IEEE Trans. Syst. Man Cybern. Syst.22 [54] random walk-based graph representation learning Ethereum node classification (detect phishing scams)

tokens transfer graphs. Edges are directed; self-edges (an
edge to the same account), multi-edges (multiple transfers of
a token between a source and a target account), and simple-
edges (at least one transfer of a token between a source and
a target account) are counted.

• Chen and Ng [41] used daily Storj token transfer
networks, which are unweighted, directed graphs, without
considering the number or the amount of assets transferred.

• Motamed and Bahrak [42] built monthly (external) trans-
action graphs that are unweighted, undirected graphs.
• Guo et al. [43] studied the (external) transaction graph,

they considered: (a) directed, weighted graph, (b) directed,
unweighted graph, and (c) undirected, unweighted graph,
where the edge weight is the amount of ether transferred.

• Lee et al. [44] derived four networks: (a) TraceNet,
consisting of all successful traces with non-null from/to ad-
dresses as edges; (b) ContractNet, a subgraph of TraceNet,
where only those edges with both from address and to address
belonging to smart contracts, are retained; (c) TransactionNet,
whose edges are formed by external transactions (similar to the
money flow graph [36] and transaction graph [42], [43]); and
(d) TokenNet, based on explicit transfer of tokens. The authors
considered multi-digraph and simple, undirected versions of

each graph. In the former, multiple edges (repeated interactions
or transfers) between a pair of vertices are retained. In the later,
at most one undirected edge between every pair of nodes is
considered. The total amount of assets being transferred are
not investigated. In [8], this research group studied temporal
variations of the four networks, considering yearly, 6-monthly,
3-monthly, and monthly graphs.
• Li et al. [45] studied 31 individual ERC20 tokens

transfer graphs and their daily snapshots. The edge weight
denotes dissimilarity between two nodes, that is, the larger is
the transferred amount between two nodes, the smaller is the
inter-node dissimilarity, and less is the edge weight.
• Chen et al. [23] built ERC20 token creator (TCG),

holder (THG), and transfer (TTG) graphs. In TCG, an
unweighted, directed edge denotes token creation relationship.
THG is a weighted, directed graph, where an edge denotes
holding of a token, and the edge weight represents the shares
of the token being held. TTG is also a weighted, directed
graph, indicating transfer of tokens. An edge weight denotes
the total number of transfer records between the two nodes,
and ignores the type and number of tokens.
• Gao et al. [47] constructed ERC20 token creator (TCG),

holder (THG), and transfer (TTG) graphs with 2 117
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Fig. 2: Various graphs created from interactions between accounts,
transactions, token transfers; as well as their common applications.

counterfeit tokens. Hence, these graphs are similar to the
ones in [23], but they only consider counterfeit tokens.

• Ferretti and D’Angelo [48] studied the (external) transac-
tion graph, which is similar to the money flow graph in [36].
Besides, they analyzed temporal properties by considering
different snapshots starting at various block numbers.

• Lin et al. [49], [50] employed (external) transaction
graph as a temporal, weighted, multi-digraph, where a weight
(amount of ether transferred) and a time-stamp is associated
with every edge, denoting a transaction via the edge.

• Mascarenhas et al. [51] represented the (external) trans-
action graph as time-varying graphs on yearly basis. The edge
weights are assigned based on the number of transactions, as
well as weighted by the amount of ether transferred.

• Bai et al. [9] constructed three temporal graphs: user-
to-user, contract-to-contract, and user-to-contract, based
on external and internal transactions. The first and third
graphs are similar to user-to-user and user-to-smart contract
graphs, respectively [39]; whereas the second one is same as
ContractNet [44]. The sliding window is varied between 180
- 1 260 days, and is shifted with a granularity of 45 days.

• Ofori-Boateng et al. [10] identified 6 individual token
transfer graphs, and stacked them as a multi-layer network,
each layer denoting a specific token. The edges are directed
and weighted, where an edge weight indicates the transferred
token value. Moreover, the authors considered daily sequence
of such multi-layer networks for anomaly detection.

• Poursafaei et al. [53], Chen et al. [55], and Wu et al. [54]
studied the (external) transaction graph and annotated each
edge (or node) with the number of transactions, amount of
ether transferred, and time interval of the transactions.

• [56] studied 8 individual ERC721 token transfer
graphs. The nodes are EOAs, and each edge stores the cost
of buying the token, the token ID, and the transaction time.
Summary. The wide spectrum of graphs constructed by our 25
surveyed papers is a testimony to the rich and diverse ecosys-
tem of Ethereum blockchain. For instance, external transactions
and token-based graphs can be further classified into multiple
sub-categories, e.g., user-to-user, contract-to-contract, contract
creation and invocation graphs, full token network, individ-
ual token networks, ERC20 token graphs, ERC721 token
graphs, etc. (Figure 2). Moreover, one can obtain datasets

for different kinds of graphs related research, including static
graphs, dynamic graphs, temporal snapshot graphs, directed
graphs, weighted graphs, simple and multi-graphs, attributed
graphs, multi-layer networks, and even datasets for machine
learning and topological data analysis. This demonstrates the
research value of the data stored on Ethereum blockchain.
We present in Figure 2 a summary diagram of several
graphs that can be constructed based on interactions between
accounts, transactions, and token transfers; together with their
applications. We hope that our summary diagram would be a
starting point for future research in this direction.

C. Graph Properties and Applications of Ethereum Networks

We next focus on graph properties, topological data anal-
ysis, and machine learning algorithms applied over Ethereum
graphs, as well as the target applications demonstrated in the
literature (Table II). We conclude with a summary of insights.
Graph property analysis. Majority of the works conducted
graph-based analysis by measuring various graph properties,
which can be classified as: (a) global properties, also known
as “summary features”, and (b) local properties or “local
features” of individual nodes and edges [44]. Important lo-
cal properties analyzed on Ethereum graphs are node de-
gree distribution (including in- and out-degrees and their
ratios), node centrality measures such as degree, closeness,
betweenness, PageRank, and Eigenvector centrality. Among
global properties, most prominent ones studied are connected
components, reciprocity, assortativity, maximum clique, core
decomposition, density, triangle and motif counts, community,
global clustering coefficient, shortest path and diameter.
Topological data analysis (TDA). Both [45], [10] conducted
topological data analysis on Ethereum networks for anomaly
detection, the key concepts include simplicial complex, per-
sistent homology, Betti number, functional data depth, and
stacked persistence diagram. TDA systematically infers quali-
tative and quantitative geometric and topological structures of
blockchain transaction graphs at multiple resolutions. There-
fore, TDA can capture subtler patterns in transaction graphs,
which are often associated with illicit or malicious activity and
these are inaccessible with more conventional methods based
on various forms of information aggregation [10].
Machine learning (ML) methods. Five past works performed
graph representation learning with Ethereum blockchain
graphs. Lin et al. [49], [50], Poursafaei et al. [53], and Wu
et al. [54] designed temporal, node, and edge features-biased
random walks for graph representation learning. Chen et al.
[55] performed graph convolutional neural network (GCN)-
based node embedding. Chen and Ng [41] proposed motif-
based LSTM model for Ethereum token price prediction.
Target applications and findings. Bulk of the works con-
ducted graph analysis to gain insights into transaction and
token transfers. Some of them also considered explicit down-
stream tasks, e.g., node classification, link prediction, anomaly
detection, and token price prediction.
• [36]: The degree distributions in MFG, CCG, and CIG

follow power-law, indicating that a few developers created



many smart contracts. Based on various centrality measures,
financial applications, e.g., exchange markets are the most im-
portant nodes in all three graphs. The authors also conducted
cross-graph analysis to address two security issues.

• [37]: The transaction graph does not densify with time,
converges to heavy-tailed distribution, and shows disassorta-
tive mixing – new nodes mostly connect to high-degree nodes.

• [38]: Full ERC20 tokens transfer graph’s node degree
distribution and token popularity follow power-law properties.

• [40]: The individual ERC20 tokens transfer graphs gen-
erally follow a star or a hub-and-spoke pattern.

• [41] proposed motif-based Long Short-Term Memory
(LSTM) model for Ethereum token price prediction.

• [44]: For both TraceNet and TransactionNet, Log-
normal, Weibull, and Power-law with cut-off are better fit
than the classic power-law degree distribution. Mining pools
and mixers create high outdegree nodes, whereas ICO smart
contracts form high indegree nodes. Blockchain graphs have
low transitivity, most frequent motifs observed are chain and
star-shaped. Deleting only the highest-degree node (e.g., Bi-
nance, a global cryptocurrency exchange) may disconnect the
entire largest weakly connected components in these graphs.
However, blockchain graphs contain a single, large strongly
connected component (SCC), and about 98% of the remaining
nodes can either reach this SCC, or can be reached from the
SCC. Based on [8], these networks are growing at a fast speed
following the preferential attachment growth model. The user
accounts remain active longer than smart contracts.

• [45] employed TDA, e.g., persistent homology and func-
tional data depth to predict Ethereum-based tokens’ price
anomaly. [10] extended TDA over multi-layer Ethereum
blockchain network for anomaly detection.

• [23] proposed an algorithm to verify if different tokens are
created/ controlled by the same entity, and identified abnormal
transactions in decentralized exchanges via graph analysis.

• [46]: Degree distributions of the studied individual token
networks follow truncated power-law model, and each net-
work, as a dynamical system, can be modeled as a damped
harmonic oscillator, approaching to its equilibrium state.

• [49], [50] developed temporal random walk-based node
embedding techniques for link prediction (i.e., predicting the
occurrence of a transaction in a given graph) and node
classification (phishing vs. genuine accounts). Among other
works, [53], [54], [55] also designed random walk and GCN-
based node embedding methods for node classification.

• [9] reported a strong correlation between the size of the
user-to-user transaction graph and the average Ether price. The
distribution of wealth, degree, and transaction number always
remain unfair throughout the development of Ethereum.

• [56] proposed a methodology to identify the major NFT
owners and follow their buying and selling patterns.
Summary. Given the market capitalization of Ethereum,
downstream tasks such as node classification, link prediction,
address clustering, asset price prediction, and anomaly detec-
tion (Figure 2) are critical in anti-money laundering, criminal
usage, abuse, and fraud detection, transaction risk prediction,

blockchain intelligence, etc. Researchers working on natural
language processing and sentiment analysis using tweets, on-
line articles, cryptocurrency prices and charts, Google Trends
about blockchain [57] could find supporting views based on
data analysis with Ethereum blockchain graphs. Anomaly
detection with historical transaction data can be utilized by
companies to build safer blockchain ecosystems.

IV. CONCLUSIONS AND FUTURE WORK

We conducted a survey of literature on graph analysis
with the Ethereum blockchain data. We first provided a brief
introduction to Ethereum’s heterogeneous ecosystem and data
extraction tools. Next, we identified twenty five research
papers published at peer-reviewed venues, and categorized
them according to their (a) publication venues, years, cate-
gories, publishers, and authors’ affiliations; (b) data extrac-
tion methods, dataset durations, and the graphs constructed;
(c) graph properties, topological data analysis, and machine
learning algorithms applied, as well as the target applications
demonstrated. Our article is timely and would be valuable to
graph data scientists and blockchain researchers.

Future work can be in several important directions.
— First, there is little work on graph analysis with dApps

and DeFi. Accounts interact with each other based on different
dApps and DeFi protocols, thus forming graph structures.
One can investigate their graph properties, similarities and
differences based on graph embedding, and identify anomalies.

— Second, there are relatively less works on graph anal-
ysis of the individual ERC20 token subnetworks, with
the exceptions of [40], [45], [46], [10]. However, [45], [10]
conducted topological data analysis, and [40], [46] did not
study global and local graph properties extensively, neither
their temporal evolutions. One may correlate these properties
with real-world incidents, e.g., token prices, popularity, Google
trends, etc., that would lead to more accurate forecasting.

— Third, due to several modes of interactions among EOAs
and contracts, e.g., transactions, token transfers, dApps and
DeFi usage, one may construct a multi-layer network, where
each layer will denote one specific mode of interaction. Multi-
layer graphs are an expressive model of real-world activities,
and would be an interesting area of study.

— Fourth, Ethereum accounts can be grouped into various
categories and granularity, e.g., miners, mining pools, mix-
ers, exchanges, phishing accounts, ICO contracts, gambling
games, etc. Once we cluster them based on their categories
and/or roles in the network, the resulting graph structure
might be very different from the initial one; therefore, graph
property measurements would also vary. One can conduct
graph analysis in an OLAP (online analytical processing)
manner, by drilling-up/down based on account groups and
hierarchical categories. Visualization at multiple resolutions
will be beneficial to end-users for deriving insights.

— Fifth, due to highly dynamic nature of Ethereum ac-
counts and transactions, employed ML models must deal with
data and model drifts. Drift detection, incremental learning,
machine unlearning, and continuous learning can be used.
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