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Abstract—As a fundamental problem in social influence prop-
agation analysis, learning influence parameters has been exten-
sively investigated. Most of the existing methods are proposed
to estimate the propagation probability for each edge in social
networks. However, they cannot effectively learn propagation
parameters of all edges due to data sparsity, especially for the
edges without sufficient observed propagation. Different from
the conventional methods, we introduce a novel social influence
embedding problem, which is to learn parameters for nodes
rather than edges. Nodes are represented as vectors in a low-
dimensional space, and thus social influence information can
be reflected by these vectors. We develop a new model Inf2vec,
which combines both the local influence neighborhood and global
user similarity to learn the representations. We conduct extensive
experiments on two real-world datasets, and the results indicate
that Inf2vec significantly outperforms state-of-the-art baseline
algorithms.

I. INTRODUCTION

Online social networks, such as Facebook, Twitter,

LinkedIn, Flickr, and Digg are platforms that are used for

spreading ideas and messages. Users’ behaviors and opin-

ions are highly affected by their friends on social networks,

which is defined as social influence. Motivated by various

applications, e.g., viral marketing [1], social influence studies

have attracted extensive research attention. One fundamen-

tal problem for social influence study is to learn influence

parameters from observations [2], [3], [4], [5], [6], [7], [8].

We can observe a sequence of actions of users on social

networks. For example, users like a story on Digg — which

is a news sharing website, and then their friends may like

the story as well. Based on users’ online behaviors, we

aim at learning parameters to reflect the social influence.

The process of modeling social influence can benefit many

tasks, such as predicting who will be influenced over the

social networks. Various methods [2], [3], [4], [9], [10] have

been proposed to learn the influence parameters, and most

of them learn diffusion probability for each edge. However,

due to the sparsity of propagation observations, these methods

cannot effectively estimate the influence parameters for all

the edges, especially for the edges without sufficient observed

propagations. Moreover, all these methods only consider the

social influence in estimating influence parameters, but do not

consider other factors, such as similarity of user interest.

Network embedding [11], [12], [13], [14], [15] has been

recently proposed to represent each user in a latent low-

dimensional space. The structure of a network is captured by

the learned representations of users.

Inspired by the network embedding approaches, we inves-

tigate a new approach for modeling social influence. Instead

of directly estimating propagation probability of each edge,

we attempt to learn representation of each node, such that the

social influence is reflected by the representations of nodes

in a latent low-dimensional space. This approach has two

advantages. First, it can help to effectively identify the hidden

influence relationships among users. For instance, given that

user u1 can influence user u3, and user u2 can affect both

user u3 and user u4, then user u1 probably is also able to

influence u4. However, such relationships cannot be explicitly

captured by previous models[2], [3]. Second, it can alleviate

the challenge caused by sparse observation data. In particular,

existing models cannot effectively learn probabilities for the

edges without observed influence propagation. For instance, if

no social influence has been observed on a link (u, v), it is

hard to estimate the influence probability Puv . In contrast,

embedding model can learn the representation of node u
and node v respectively, and then estimate the diffusion

relationship between u and v.

To the best of our knowledge, none of the existing work

on learning influence models jointly captures the influence

propagation and network embedding, and none of previous

work considers user interest similarity. To fill this gap, we

propose a novel research problem: social influence embed-
ding. This problem aims to effectively embed the social

influence propagation in a low-dimensional latent space. The

challenges of this problem are threefold. First, we need to

model multiple factors that would influence users’ online

actions, including social network structure, past influence

propagations, and similarity of user interests. Second, how

to effectively learn representations of nodes based on the

sparse observed propagation data? Third, the learning process

should be efficient such that we can handle large-scale social
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networks. To address these challenges, we develop a new

representation model called Inf2vec to learn social influence

embedding.

The key of Inf2vec model is how to generate influence

context, which is a set of users that would be influenced

by a given user, from the observed propagations. However,

it is nontrivial to generate influence context since we can

merely observe users’ actions, but do not know who are

indeed affected by a given user. In this work, we consider

two constituents for generating influence context. First, we

employ local influence propagation neighborhood. Given a

social network and a set of action observations, we extract

a propagation network, and utilize a random-walk strategy

on the propagation network to produce a set of users. These

users act as local influence context for the given user. Second,

we consider the similarity of user interest. A user’s behavior

can be influenced not only by his friends, but also by the

user’s individual preferences (as to be analyzed in Section III).

Intuitively, users with similar interests are more likely to

perform the same action. To incorporate the effect of user

interest similarity, for a given user, we randomly sample

a set of users who perform the same action as the global

user similarity context. With the two constituents, we are

able to incorporate three factors in learning node embedding:

local influence context reflects network structure and influence

propagation, while global user similarity context represents

the factor of user interests. Based on the generated influence

context, Inf2vec leverages the word2vec technique [16], [17]

to learn the representations for social influence embedding.

The main contributions are summarized as follows.

• We propose a new framework to learn influence parame-

ters from observations, which is a fundamental problem

for social influence analysis. Specifically, we investigate

a novel social influence embedding problem, which is to

represent the influence propagation information in a low

dimensional latent space. Different from most previous

studies on learning influence parameters, we learn the

latent representation of each node, instead of learning

the propagation probability of every edge. To the best of

our knowledge, this is the first work that directly utilizes

representation of nodes to capture social influence.

• We propose a new algorithm Inf2vec to learn nodes’

representations. The novelty of this algorithm is gener-

ating influence context, which combines both the local

influence context and the global user similarity context.

Consequently, our approach is able to incorporate three

factors: network structure, influence diffusion, and simi-

larity of user interests. However, none of previous work

on learning influence parameters considers user interest.

• We conduct extensive experiments on two real-life

datasets. The empirical results demonstrate that Inf2vec

significantly outperforms the state-of-the-art baselines.

II. RELATED WORK

With the proliferation of online social networks, a great

deal of social influence data has been generated. Such data

enable the influence propagation analysis in online social

networks. Many research problems are proposed for influence

propagation analysis, such as inferring the underlying diffusion

network [18], [6], [7], topic-aware influence analysis [5],

[9], and temporal dynamics of influence [4], [8]. One of

the fundamental research problems in influence propagation

analysis is to learn influence parameters [2], [3], [19], [20],

[21] from a given social network and action log, which is the

focus of our work. Therefore, in this section we review related

work on learning influence parameters.

We first introduce two prevalent influence diffusion models,

which are widely used in previous work to capture social

influence. One is Independent Cascade (IC) Model, in which

each newly activated node u affects its neighbors indepen-

dently. Consider a directed graph G = (V, E), where each

edge (u, v) ∈ E is associated with influence probability Puv .

Let At be the users that are affected at step t. Starting with

an initial set of seeds A0, other users in that graph would be

activated by these seeds. Each node v ∈ At tries to activate its

inactive friends at time t+1. If one neighbor w is activated, w
will switch from inactive to active. Irrespective of whether

v succeeds, v loses its ability to affect its inactive friends in

subsequent rounds. If no more newly activated node exists,

the whole process ends. The other is Liner Threshold Model

(LT), in which an inactive node becomes active if the sum

of the weights of the edges with active neighbors exceeds

the threshold. Majority of the previous influence parameter

learning algorithms [2], [3], [10] are based on these two

prevalent models. In contrast, we propose a new data-driven

algorithm to directly capture diffusion information from real-

life dataset, without any prior assumption of spread models.

We proceed to review the related work on learning influence

parameters based on the aforementioned spread models. Most

of existing methods directly estimate the diffusion probability

for each edge [2], [3], [10]. Goyal et al. [3] propose to

estimate the propagation probabilities using the co-occurrence

counting. Specifically, the Maximum Likelihood Estimator is

employed to infer the probability: Puv = Au2v

Au
, where Au2v

is the number of times that u successfully influences v and

Au is the total number of trials. This approach is simple

and efficient. Another type of methods utilize Expectation

Maximization (EM) technique to learn the diffusion proba-

bilities [2], [9], [10]. Saito et al. [2] propose an EM method

to infer the probability Puv for the IC model. Barbieri et al. [9]

extend the EM framework to learn the topic-aware propagation

probability P z
uv , where z indicates a topic. Goyal et al. [21]

further propose a credit distribution model that directly learns

the top-k influencers from past propagation traces. All the

previous studies do not consider the user interest similarity.

More importantly, due to the sparsity of available propagation

data, these existing approaches are not able to effectively learn

the influence parameters.

Recently, Bourigault et al. [10] aims at learning the prob-

abilities of edges based on an embedded cascade model. The

social influence information of two users is captured by the

Euclidean distance between their representations. Compared
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with our method, this approach has several limitations. First,

it does not explicitly utilize the network structure, which is

important for social influence analysis. In that work, social

links are created. It creates a link (u1, u2) if and only if u1

performs an action before user u2. This may not be true, since

a user can be influenced by other users only if real social

relationships exist such that this user can watch the activity of

others. Second, the proposed approach is specifically designed

for the IC model and fails to incorporate user interest factor to

model user’s online behaviors. Last but not least, the proposed

algorithm is very slow for large-scale networks. It employs the

EM technique [2], which is time consuming.

Our work is also related to the work on network embed-

ding [11]. Generally, network embedding problem is to learn

the representation of each node in a latent low-dimensional

space such that the network structure can be preserved. The

recent network embedding methods [11], [12], [13], [22], [15]

utilize the word2vec technique [17], [16], which is developed

for learning representations of words. Perozzi et al. [11]

propose the Deepwalk model, which first generates context

with random walks and then update the representations with

skip-gram [17], and utilize a hierarchical softmax method [23]

to solve it. Tang et al. [12] design the LINE algorithm,

which is able to preserve both the local and global network

structure by using the first-order and second-order proximity.

LINE utilizes negative sampling technique to approximate the

softmax. Grover et al. [13] develop the node2vec model for

network embedding. To incorporate homophily and structural

equivalence, node2vec defines a diverse notion of a node’s

network neighborhood. A biased random walk procedure is

designed to explore flexible neighborhood. Yang et al. [22]

develop a semi-supervised learning method for network em-

bedding. They jointly exploit the class label and network

structure to learn the embedding. Ribeiro et al. [15] exploit

the word2vec technique to preserve structural identity for

node representation. Wang et al. [14] develop a deep learning

architecture to address network embedding problem. Different

from existing network embedding methods, we additionally

consider influence propagation and similarity of user interest.

Therefore, our task is more challenging.

III. SOCIAL INFLUENCE EMBEDDING

In this section, we first present the observation and analysis

on real-life datasets. Based on the data analysis, we give the

definition of social influence propagation.

A social network can be modeled as a graph G = (V, E)
where V is the set of users and E is the set of edges. An

edge (u, v) indicates that user u is a friend of user v. We

are also given an action log A, which records users’ online

behaviors. The action log A contains a set of tuples in the form

of (u, i, tiu), which denotes that user u performs action i, e.g.,

like a story or a photo, at time tiu. Each item i corresponds to

one diffusion episode Di = {(u, tiu)}, which is a set of users

who adopt action i in chronological order.

Before introducing the observation and problem statement,

we discuss two assumptions.

• If we observe that user u performs an action before user

v, and if there is also a directed link (u, v) in social

network, then we assume that user u influences user v.

This assumption is widely made in previous studies on

learning influence probability, such as [2], [3], [9]. The

underlying intuition of the assumption is that if user v
lists user u as a friend, user v may watch the activity of

user u and be affected by user u.

• For the users that perform identical actions, we assume

that they share similar user interest. This assumption is

widely adopted in user behaviour analysis and recom-

mendation systems [24]. Individual interest plays an im-

portant role in users’ behaviors, and users have different

interests [9]. By exploiting this assumption, we consider

the user interest for modeling users’ online behaviors.

A. Data Observations

1) Datasets: To study the social influence on social net-

works, we use two publicly available datasets, which are also

used in previous work on learning social influence propagation

parameters. One is Digg, which contains information about

stories displayed on the front page of Digg (digg.com) in June

2009 [25]. The Digg dataset comprises 68K users connected

by 823K edges. The dataset also contains Digg votes, each of

which records users’ voting on a particular story and the voting

time. The other dataset is Flickr, which contains a friendship

graph and a list of favorite marking records of the photo

sharing social network (www.flickr.com) [26]. There are 162K

users connected by 10M edges. The statistics of two datasets

are stated in Table I. Each action contains the information of

(user, item, time). We observe that the action data is very

sparse. It is challenging to effectively learn social influence

propagation parameters based on such sparse data.

Dataset #User #Edge #Item #Action
Digg 68,634 823,656 3553 2,485,976
Flickr 162,663 10,226,532 14,002 2,376,230

TABLE I
STATISTICS OF DIGG AND FLICKR DATASET

2) Observations: Given a social graph and its action log,

we extract the social influence pairs based on the first assump-

tion. We define the social influence pairs as follows.

Definition 1: (Social Influence Pair) Given a social net-

work G = (V, E) and a diffusion episode Di, social influence

pair (ui → uj) exists if it satisfies: (1) ui ∈ V and uj ∈ V;

(2) (ui, uj) ∈ E ; (3) tiui
< tiuj

.

For a user ui, if his/her friend uj performs the same action

after ui, then there exists a social influence pair (ui → uj)
between them. In this way, we get 7.9M social influence pairs

for Digg and 5.3M pairs for Flickr. Each social influence pair

(ui → uj) contains a source user ui and a target user uj .

To examine the characteristics of social influence pairs, we

plot distributions of the source user frequency and target user

frequency on Digg and Flickr dataset.

Figure 1 illustrates the distribution of source users on Digg

and Flickr. We observe that the source user frequency follows
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a power-law distribution. The high frequency of a user being

source user indicates that this user can influence many users

and thus is influential. Most of the users are not influential,

while some users are extremely influential on both social

networks. Similarly, as shown in Figure 2, the distribution

of target users also follows the power-law distribution. It

demonstrates that some users are more likely to be influenced

by their friends.
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Fig. 1. Distributions of users being source users on Digg and Flickr. The
X-axis presents the number of times an user acts as a source user and the
Y-axis shows the count of such users.
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Fig. 2. Distributions of users being target users on Digg and Flickr. The
X-axis presents the number of times an user acts as a target user and the
Y-axis shows the count of such users.

To investigate the effect of social influence on users’ online

behaviors, we compute the cumulative distribution function

(CDF) of the count of friends that have performed the same

action before a user. Figure 3 shows the CDF on Digg and

Flickr. In Digg (resp. Flickr) dataset, the CDF of x = 0 is

0.7 (resp. 0.5), which indicates that 70% ( resp.50%) users

conduct an activity without any influence from their friends.

Meanwhile, 30% (resp. 50%) users perform an action after at

least one of his/her friends does that. Since a user may see

his/her friends’ online activity, we assume that this user would

be influenced by his friends. This observation demonstrates

that although social influence plays a significant role in the

decision of online behaviors for users, but the users’ behaviors

are also affected by other factors.

B. Problem Statement

Given a social network and its action log, modeling in-

fluence propagation aims to infer the influence probabilities

between users. As a fundamental problem of social influence

analysis in social networks, learning influence parameters has

been investigated in several proposals [3], [2], [4], [10]. Fig-

ure 4(a) shows the basic idea of these existing social influence

learning problems, which learn the propagation probability for

each edge. Generally, these problems attempt to estimate the

probabilities of |E| edges.
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Fig. 3. The CDF of taking an action after x friends have performed the
action.

Different from existing studies, we investigate a novel

research problem: social influence embedding. We aim to

represent the social influence propagation in a low-dimensional

latent space. In this problem, we attempt to learn the repre-

sentations of |V| nodes in the given network. The basic idea

of social influence embedding is shown in Figure 4(b), where

we learn the representations for nodes: {u1, u2, u3, u4, u5}.
In social influence embedding, the propagation relationship

between two users is modeled by the similarity between their

vectors. Note that influence propagation is directed. To reflect

the direction of social influence, user u has two vectors in K
dimensional space: Su ∈ RK acts as the source representation,

which indicates the capability to influence other users; while

Tu ∈ RK acts as the target representation, which represents

the tendency of being affected by other users. Here, the number

of dimension K is a tunable parameter, and its value is

determined empirically.
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(b) Social influence embedding

Fig. 4. Social influence learning on social networks.

In social influence analysis, we need to consider the global

property for each user. On the one hand, intuitively, some

users, such as movie stars and politicians, are more influential

than ordinary users in social networks. On the other hand,

some users are more inclined to be affected by others. These

intuitions can be explained by Figure 1 and Figure 2. However,

such global property cannot be reflected by the two latent

vectors that we will learn for each user. To better model

the social influence, we additionally introduce two terms:

influence ability bias bu reflects the overall ability of user

u to affect others, and conformity bias b̃u reflects a user’s

inclination to be influenced by others [27].

We are now ready to define the social influence embedding

problem as follows.
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Definition 2: (Social Influence Embedding Problem)
Given a social network G = (V, E), an action log A = {Di},
where Di is a diffusion episode, and the number of dimension

K, we aim to learn: (1) source embedding Su ∈ RK and target

embedding Tu ∈ RK in K dimensional latent space for each

user u, as well as (2) influence ability bias bu and conformity

bias b̃u for each user u.

Compared with existing influence learning work that es-

timates probabilities for edges [2], [3], [10], our solution to

the social influence embedding problem aims to better capture

the social influence propagation by effectively capturing the

influence relations among users and handling the data sparsity.

In addition, the existing methods are designed for particular

influence spread models, e.g., the IC model and the assumed

influence spread models cannot take into consideration user

similarity factor. In contrast, we aim to incorporate user

similarity into parameter learning.

IV. INF2VEC REPRESENTATION MODEL

We proceed to present our proposed Influence-to-vector

(Inf2vec) method to address the challenges mentioned in

Section I for the social influence embedding problem. We first

present how to generate the social influence context. Then we

state the procedure to learn representations of nodes based on

the generated influence context.

A. Generating Influence Context

Given a user, we need to identify the users who are probably

influenced by the user, which is called as influence context
of the user. However, given a social network and a diffusion

episode, we cannot exactly know the influence context. In

addition, the social influence would spread in the social

network, i.e., a user may influence other persons through

the intermediate users. Furthermore, it is very important to

incorporate similarity of user interest in the influence model,

although it is challenging to incorporate such additional infor-

mation. We next present our approach to generate the influence

context, including local influence context and global similarity

context.

1) Local Influence Context: Given a social network G
and an episode D, we can obtain corresponding social in-

fluence pairs. However, the extracted social influence pairs

only reflect the first-order propagation, i.e., whether a user

influences his/her friends. The social influence would spread

from one user to other users, who are not confined to the

first-order neighbors. For example, given two social influence

pairs (u1 → u2) and (u2 → u3), we can infer that user

u1 may affect u3 indirectly. Therefore, we need to consider

such high-order influence propagation. Consequently, we can

further obtain an influence propagation network by combining

all the influence pairs. For each episode Di, we build a

propagation network, which records how the information about

i propagates in the social network G.

Definition 3: (Influence Propagation Network) Given a

social network G = (V, E) and a diffusion episode Di, the

propagation network is Gi = (Vi, Ei), which satisfies: (1) Vi ⊂

V and Ei ⊂ E ; (2) For each (u, v) ∈ Ei, there is a social

influence pair (u→ v) in diffusion episode Di.

��
��

��

��

��

Social network

��
��

��

��

Influence propagation 
network

��

(��, 1), (��, 2), (��, 3), (��, 4), (��, 5)
Episode

Fig. 5. An example of building influence propagation networks.

Figure 5 illustrates the idea of obtaining influence propaga-

tion networks. The example social network contains 5 users:

u1, u2, u3, u4, u5. Each episode contains the sequential action

of users. Based on the social network and episode data, we

extract all the social influence pairs. For example, since user

u4 performs the action before user u5, we can obtain a social

influence pair (u4 → u5). Similarly, we obtain other three

social influence pairs: {(u2 → u3), (u4 → u1), (u3 → u1)}.
By combining these influence pairs, we get the influence

propagation network.

The propagation network Gi is a subset of the social network

G. The influence propagation network is a directed acyclic

graph due to the time constraint. Each node may have multiple

children and also may have several parents.

Based on the propagation network, we consider the high-

order influence in social networks. We utilize a random walk

with restart process to model a user’s influence spread in the

influence propagation network. This approach has two benefits.

First, it can simulate the influence spread sequences, and thus

high-order influence can be considered. Second, it can produce

more influence pairs by additionally considering high-order

influence. Hence we can alleviate the challenge caused by

the sparsity of diffusion data. Note that A. Goyal et al. [21]

utilize a similar strategy to solve sparsity issue. They propose

a credit distribution model to assign influence in propagation

network. However, they only exploit first-order and second-

order influence propagation. With random walk process, our

method can capture higher-order propagation.

The random walk process reflects the local influence neigh-

borhood. Given an influence propagation network Gi and a user

u, we generate the influence context set Ci
u , which contains

the users that are probably influenced by user u. We utilize

a random walk with restart strategy to generate Ci
u. Starting

from user u, it randomly chooses one neighbor to visit. Based

on the currently visited user, it randomly samples one neighbor

of this user to visit next. At each step, it has some probability

to go back to user u (In our work, we set the restart ratio as

0.5 by following default setting of the work [13]). To limit the
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size of Ci
u, we use a length threshold Lθ. The random walk

process stops when Lθ is reached.

2) Global User Similarity Context: As shown in Figure 3,

users’ online behaviors are not always attributed to social

influence. In this work, we further consider the user preference

similarity for generating influence context. User preference

has been shown very important to model users’ behaviors in

recommendation systems [24]. A user’s online action reflects

his/her personalized interest. The users with similar interest are

more likely to have similar behaviors. Given a propagation

network Gi = (Vi, Ei), all the nodes in Vi have performed

action i, which means that these users are interested in the

same item. However, existing methods do not consider such

information. Moreover, it is very hard to integrate user interest

similarity in the conventional IC model, which is commonly

used in existing studies on influence parameter learning [2],

[10]. To address this issue, we consider the user interest

similarity when generating influence context Ci
u.

To capture the user interest similarity, we additionally

consider the users who perform the same action. Given a

user u in propagation network Gi = (Vi, Ei), we randomly

sample a set of users, denoted by L′θ, in Vi. Note that the local

influence context only reflects the local neighborhood, while

the samples of similar users can reflect the global context.

Hence, we consider these sampled users as the global user

similarity context.

3) Algorithm for Generating Influence Context: Next, we

propose an algorithm for generating the influence context

pair (u,Ci
u) in the propagation network by combining the

local influence context and global user similarity context. The

pseudo code for generating influence neighbors is shown in

Algorithm 1. Given a user u ∈ Vi, we aim to generate the

influence context Ci
u. To balance the contribution of these two

components, we utilize a component weight α. We generate

(Lθ = L · α) local influence neighbors by using a random

walk starting at user u (line 2). Next, we randomly sample

(L′θ = L · (1 − α)) users from the nodes in Vi (line 3). By

this way, the influence context set Ci
u consists of two types of

nodes (line 4). The time complexity of Algorithm 1 is O(L),
since we generate L nodes as the context.

Algorithm 1: Generating Influence Context
input : Propagation network Gi = (Vi, Ei), user u ∈ Vi,

length threshold L, component weight α
output: The user and its influence context (u,Ci

u)
1 C1 ← ∅, C2 ← ∅, Ci

u ← ∅ ;
2 C1 ← (L · α) nodes by random walk from Gi starting at u ;
3 C2 ← L · (1− α) nodes by uniformly sampling from Vi;
4 Ci

u ← C1 + C2 ;

5 return (u,Ci
u);

B. Learning Representations

The next step of social influence embedding is how to

effectively model the relationships between users and their

influence contexts.

As shown in Section III, the social influence observations

follow power law distribution, which is the same as the

word frequency distribution in natural language. This finding

motivates us to utilize the word2vec technique [17], [16]

to learn the latent representation for each user. Word2vec

has been demonstrated to capture the semantic relationships

among words very well. Recently word2vec has been adopted

for many other applications such as learning network embed-

ding [11], [13] and modeling user’s sequential behaviors [28].

We exploit the skip-gram architecture [17], which is to

predict the context of a given user. The key of influence

embedding is to estimate the probability of observing the influ-

ence context P (Ci
u|u) that are generated with corresponding

episode Di. Assuming that the users {v ∈ Ci
u} are indepen-

dent with each other, and then the probability Pr(Ci
u|u) is

determined by each independent probability Pr(v|u).
Pr

(
Ci

u|u
)
=

∏
v∈Ci

u

Pr(v|u) (1)

For each episode Di, we can generate a list of (u,Ci
u)

tuples, which is denoted by PDi . We consider all the observed

episodes Di ∈ A, and attempt to maximize the log probability

of them. Therefore, we define the objective function to be

maximized as follows.

O =
∑

Di∈A

∑
(u,Ci

u)∈PDi

∑
v∈Ci

u

log Pr(v|u) (2)

In order to calculate this objective function, we need to

compute the propagation probability from u to v. In our

approach, the probability Pr(v|u) is computed by their repre-

sentations: Su is the representation of user u as source, Tv is

the representation of user v as target, bu denotes the influence

ability bias of user u and b̃v indicates the conformity bias of

user v. Given a user u, we predict the probability that user

v being influenced by user u, which can be formulated as a

softmax function. The probability Pr(v|u) is defined as:

Pr(v|u) = e(Su·Tv+bu+b̃v)
/
Z(u) , (3)

where Su · Tv denotes the inner product of Su and Tv , and

Z(u) =
∑

w∈V e
(Su·Tw+bu+b̃w) is the normalization term.

It is computationally expensive to directly compute Eq. (3),

since calculating Z(u) needs to enumerate each item w ∈ V .

To alleviate this issue, we adopt the negative sampling [16],

which is popularly used to compute softmax functions. The

idea of negative sampling is straightforward: instead of enu-

merating all the nodes, it only considers a small set of sampled

nodes. We randomly generate several negative instances for

each node v ∈ V . Then we employ the sampled negative

instances to approximate the softmax function:

log Pr(v|u) ≈ log σ(zv) +
∑
w∈N

log σ(−zw), (4)

where zv = (Su · Tv + bu + b̃v) and zw = (Su · Tw + bu +
b̃w), N is the set of randomly sampled negative instances and

σ(x) = 1
1+exp(−x) is sigmoid function. In Eq. 4, the first term

reflects the observed instances, and the second term models

the sampled negative instances.
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We exploit Stochastic Gradient Descent (SGD) method [29]

to learn all the parameters. In each step, we update the

parameters Θ by calculating the gradient:

Θ← Θ+ γ
∂

∂Θ
(log(Pr(v|u))) , (5)

where γ is the learning rate and ∂
∂Θ indicates the gradient of

parameters Θ. Based on Eq. 4, the gradient for corresponding

parameters can be computed as follows.

∂

∂Su
= (1− σ(zv)) · Tv +

∑
w∈N

(−σ(zw)) · Tw

∂

∂Tv
= (1− σ(zv)) · Su,

∂

∂Tw
= (−σ(zw)) · Su

∂

∂bu
= (1− σ(zv)) +

∑
w∈N

(−σ(zw))

∂

∂b̃v
= (1− σ(zv)),

∂

∂b̃w
= (−σ(zw))

(6)

The proposed Inf2vec approach is summarized in Algorithm

2. It contains two parts: the first part (lines 3–8) generates

the social influence context, and the second part (lines 9–17)

learns the parameters based on the generated influence context

for each user. The Inf2vec algorithm starts with initializing

the parameters (line 1). For each episode Di in action log,

we obtain the propagation network (Vi, Ei) (line 4) and get

Ci
u for each u ∈ Vi by the randomized procedure described

in Algorithm 1 (line 6). We utilize a list PDi to store the

generated (u,Ci
u) tuples for episode Di (line 7). Then PDi

is inserted to P , which denotes the tuples generated from all

episodes (line 8).

After that, we learn the representations based on these

generated tuples. In each tuple (u,Ci
u), we consider each node

v ∈ Ci
u and we update the parameters by negative sampling

(lines 12–16). We first update the parameters for (u, v) (line

13): Su, Tv, bu, b̃v . Then we randomly sample a set of negative

instances N (line 14). Following that, we update parameters

for each negative node w (lines 15–16): Su, Tw, bu, b̃w. The

parameters are updated by the SGD method in Eq. 5, and

gradient of parameters can be computed by Eq. 6.

The time complexity of the learning algorithm is O(|P | ·
L) +O(I · |P | ·L · |N | ·K), which contains two components:

generating context (lines 3-8) and learning representation

(lines 9-17). |P | is the size of generated (u,Ci
u) tuples, I

is the number of iterations until converge, |N | is the number

of negative sampling (typically, 5-10). Number of dimension

K indicates the length of representation vectors for each node,

which means that we need to learn O(K) parameters for

each node. Compared with the second component, the first

component can be ignored. Hence, the time complexity is

O(I · |P | · L · |N | · K). The space complexity of Inf2vec is

O(|V| ·K), since we need to learn K-dimensional vectors for

each node v ∈ V .

C. Predicting Influence Propagation

Next, we introduce how to utilize learned representations of

users to predict the influence propagation. A given user might

be influenced by multiple users. Hence we need to take all

Algorithm 2: Inf2vec
input : Social network G = (V, E), action log A = {Di},

learning rate γ, component weight α, number of
dimension K

output: Representation for each node u ∈ V: source
embedding Su ∈ RK , target embedding Tu ∈ RK ,
influenceability bias bu, conformity bias b̃u

1 Initialize Su and Tu with uniform distribution [− 1
K
, 1
K
]),

bu ← 0, b̃u ← 0;
2 Initialize P ← ∅;
3 foreach Di ∈ A do
4 Extract propagation network Gi = (Vi, Ei) ;
5 foreach u ∈ Vi do
6 Generate influence context Ci

u by Algorithm 1;

7 Insert (u,Ci
u) into PDi ;

8 Insert PDi into P ;

9 repeat
10 foreach PDi ∈ P do
11 foreach (u,Ci

u) ∈ PDi do
12 foreach v ∈ Ci

u do
13 Update Su, Tv, bu, b̃v;
14 Sample a set of negative instances N ;
15 foreach w ∈ N do
16 Update Su, Tw, bu, b̃w;

17 until convergence;

18 return Su, Tu, bu, b̃u for each user u

the possible social influence into account. Given a set of users

Sv that may affect user v, the likelihood that user v being

influenced by Sv is defined by

F ({x(u, v), u ∈ Sv}) , (7)

where x(u, v) = Su · Tv + bu + b̃v reflects the likelihood that

user v is affected by user u, and F() is an aggregation function

to merge the influence from Sv . In our work, we consider four

common aggregate functions as follows:

• Ave: take the average of all the elements,

F(x1, x2, ...xn) =
∑n

i=1 xi

n .

• Sum: linearly combine all the elements,

F(x1, x2, ...xn) =
∑n

i=1 xi.

• Max: choose the most significant factor by taking the

maximum value, F(x1, x2, ...xn) = Max(x1, x2, ...xn).
• Latest: only consider the latest element,

F(x1, x2, ...xn) = xn.

The performance of these four aggregation functions will

be evaluated in our experiments.

V. EXPERIMENTS

A. Experimental Setup

1) Dataset: In the experiments, we use the two datasets,

Digg and Flickr, introduced in Table I. In addition, we show a

case study over a DBLP citation network dataset, which will

be introduced in Section V-D.

For the action log A = {Di} of Digg and Flickr, we

randomly select 80% episodes as training set, 10% as tuning

set, and 10% as test set.
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2) Parameter Setting: The default number of dimensions is

K = 50. The length threshold L is set as 50 by default, i.e.,

the size of influence context is limited to 50. Based on the

empirical study on tuning set, we set the default component

weight α = 0.1. The learning rate γ is set as γ = 0.005.

To predict the influence propagation, the default aggregation

function is Ave in Eq. 7.

All methods are implemented in C++ and experiments are

conducted on a windows server, with a single core Intel(R)

Xeon (R), 2.80 GHz CPU and 60 GB memory.

3) Evaluated Methods: We evaluate the performance of the

following approaches.

• DE: degree-based method. The probability of each edge

is set as Puv = 1
Indegree(v) , where Indegree(v) is the

number of friends of user v. This method is widely used

in social influence analysis, such as influence maximiza-

tion problem [1].

• ST: the static model with maximization likelihood esti-

mator method [3]. The probability Puv of edge (u, v) is

computed by Puv = Auv

Au
, where Auv is the number of

actions that user u performs before user v and Au is the

total number of actions that u performs.

• EM: the Expectation-Maximization method based on the

independent cascade (IC) model [2], which learns the

propagation probability of each edge.

• Emb-IC: the embedded cascade model [10], which is

the state-of-the-art approach to learn representation of

influence diffusion. Emb-IC is based on the IC model, and

the parameters are inferred by an EM algorithm similar

to the algorithm [2].

• MF: the user-user matrix factorization method by

Bayesian Personalized Ranking [30]. The entry of the

matrix is the frequency that two users take the same

action. If two users do not share any common action,

the entry is set as 0. Note that this method only reflects

the global user similarity.

• Node2vec: the node2vec model [13], which is the state-

of-the-art algorithm for network embedding. Note that

node2vec only considers the social network structure.

• Inf2vec: the proposed model as described in Algorithm 2,

which considers both the local influence context and

global user similarity context.

Note that the first 4 methods (DE, ST, EM, and Emb-IC) are

based on the IC model. The probability of user v performing

an action is calculated by the social influence from his friends:

Pr(v) = 1−
∏

u∈Sv

(1− Puv), (8)

where Puv is the transition probability from u to v, and Sv is

the set of friends who may influence user v.

The other two baselines (MF and Node2Vec), as well as

our method Inf2vec are latent representation models. Given a

set of users Sv that may affect user v, the likelihood score is

computed by Eq. 7.

4) Evaluation Tasks: For performance evaluation, we con-

sider three tasks as follows.

• Activation prediction. Following the evaluation

method [3], we include this task, which is to predict

whether a user will be influenced by his friends. Note

that it only considers first-order influence propagation.

• Diffusion prediction. This is to follow the evaluation

method in work [10]. Given a set of seed users, we

attempt to identify users that are influenced by them.

Different from activation prediction, diffusion prediction

additionally considers the high-order propagation.

• Visualization. To provide better understanding of learned

representations, we map them to a 2-dimensional space

by using a dimension reduction tool [31].

Next, we will discuss the experimental results of these

tasks. In addition, we also report results about sensitivity and

efficiency, as well as a case study on a citation network.

B. Comparison with Baselines

1) Activation Prediction: To evaluate the quality of learned

influence parameters, we utilize the evaluation strategy in the

work [3]. Given a test episode Di = {(u, tiu)}, which contains

the chronological order of users, we want to predict the users

who will perform the action i in the future. We denote the users

who have already performed a given action as activated users.

The set of activated users is initially empty. We read records in

Di one by one. Once we read a record (u, tiu), we insert u into

the set of activated users. These activated users would further

affect other users. A user v is a candidate user if at least one

of his friends has performed the action. Let Sv denotes the

set of activated neighbors who may affect user v. In this way,

we can obtain candidate users and their activated friends, i.e.,

{(v, Sv)}. We attempt to predict whether a candidate user v
will be activated by Sv .

Given Sv , we calculate the likelihood score of activating

candidate user v: IC-based methods utilize Eq. 8, while latent

representation methods employ Eq. 7. Then we rank all the

candidate users by their scores. The ground-truth users are

those who have actually been activated by their neighbors,

i.e, those in Di. Ideally, the ground-truth users can be ranked

higher than the other users. Since we evaluate the performance

based on the ranking, it is fair and reasonable to compare IC-

based methods and representation-based methods.

We consider three evaluation metrics.

• AUC. Following the work [3], we utilize the area under

curve (AUC) value of Receiver Operating Characteristic

(ROC). Different from previous work [3] that sets a

threshold value to make predictions, which is difficult to

set, we utilize the ranking scheme [32] to calculate the

AUC value.

• MAP. Since only a very small fraction of test cases

are positive (be activated by its neighbors) and most of

them are negative (not be activated by its neighbors),

mean average precision (MAP) is informative for such

imbalanced situation[33].

• P@N. We are interested in the positive cases that users

are affected by their friends, and thus we investigate the
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precision for top-N predictions. In our experiments, we

set N as 10, 50 and 100 respectively.

Dataset Method AUC MAP P@10 P@50 P@100

Digg

DE 0.4144 0.0170 0.0098 0.0101 0.0099
ST 0.8619 0.1790 0.5221 0.2917 0.2344
EM 0.8623 0.2071 0.4994 0.3482 0.2959
Emb-IC 0.8072 0.1503 0.4721 0.2621 0.2203
MF 0.8568 0.1691 0.2783 0.2813 0.2614
Node2vec 0.6437 0.0322 0.0323 0.0513 0.0434
Inf2vec 0.8893 0.2744 0.6401 0.4389 0.3729
(stdve σ) (0.0003) (0.0033) (0.0128) (0.0100) (0.0028)

Flickr

DE 0.4782 0.0166 0.0071 0.0055 0.0050
ST 0.7738 0.0566 0.0953 0.0710 0.0623
EM 0.7479 0.0582 0.1056 0.0787 0.0655
Emb-IC 0.7213 0.0242 0.0433 0.0421 0.0374
MF 0.7785 0.0353 0.0656 0.0517 0.0451
Node2vec 0.5693 0.0065 0.0017 0.0044 0.0043
Inf2vec 0.8068 0.0606 0.1564 0.1043 0.0824
(stdve σ) (0.0022) (0.0029) (0.0035) (0.0008) (0.0007)

TABLE II
THE RESULTS OF ACTIVATION PREDICTION ON DIGG AND FLICKR

The experimental results of various methods on Digg and

Flickr are presented in Table II. In each table, we show the

results of the five evaluation metrics. We observe that the

proposed method Inf2Vec consistently outperforms all the

other methods. In this paper, the reported results of latent

representation models are the average value of 10 runs, and we

provide the standard deviation score (stdev σ) of the Inf2vec

algorithm. Note that all reported improvements over baseline

methods are statistically significant with p-value < 0.05.

We find that DE gets the lowest scores on both Digg and

Flickr. The poor performance of DE method indicates that this

naive approach is not feasible for learning social influence

parameters, although it is widely used. ST estimates the

diffusion probabilities between edges based on observations,

and can achieve reasonable performance. Compared to ST,

EM utilizes a complex Expectation-Maximization technique

to learn influence parameters. Although the technique is

more complex and time consuming, the improvement is not

significant. The performance of Emb-IC is slightly worse

than ST and EM, which indicates that the Emb-IC is not

suitable for the activation prediction task. The Inf2vec model

outperforms all the IC-based methods, including ST, EM and

Emb-IC. The possible reasons are twofold. First, these IC

based methods attempt to learn the transition probability of

each edge, but it is hard for them due to the data sparsity. There

is no sufficient historical online behavior data available to

exactly estimate probabilities of edges. Second, these IC based

methods cannot incorporate the similarity of user interest,

which is an important factor in modeling people’s behaviors.

For the two latent representation based baselines, MF per-

forms reasonable well while node2vec performs worse. MF

makes use of only user interest similarity, and the reasonable

results achieved by MF demonstrate the usefulness of global

user interest similarity in learning influence parameters. But

its performance is not as good as Inf2vec, since it does not

exploit the local influence context. This comparison indicates

that local influence context is helpful. The reason for the poor

performance of node2vec is perhaps that it considers only the

social network structure, but not the other two factors. This

result indicates that directly utilizing the existing algorithms

of network embedding does not work for the social influence

embedding problem.

To further investigate the impact of user similarity, we

consider a special case of the proposed Inf2vec by setting

the component weight α = 1.0 in Algorithm 2. In this

setting, Inf2vec only considers the local influence propagation

context, which is denoted as Infvec-L. We report the results of

Inf2vec-L in Table IV. As indicated by the results of activation

prediction task, Inf2vec-L consistently performs worse than

Inf2vec. Inf2vec-L only utilizes local influence context, but

not global user similarity context, to learn representation of

nodes. This indicates that the global user similarity context is

helpful to model the social influence embedding.

2) Diffusion Prediction: Next, we investigate the perfor-

mance of various methods for diffusion prediction task [10].

Given a set of activated users, we attempt to identify the

set of users who will be influenced by them. For each test

episode, we exploits the first 5% users as the seed users, and

the rest 95% users as ground truth. Seed users are initially

activated users, and they may affect the other users. In this

task, we need to consider both the first-order (1-hop) and

high-order (multiple-hop) influence propagation of seed users.

Similar to activation prediction, we calculate the score of

each node given the seed users. For representation models

(FMC, MF, Node2vec, and Inf2Vec), we directly employ Eq. 7

to compute the score. For IC-based models (DT, ST, EM,

and Emb-IC), we exploit the Monte-Carlo simulation [1] to

estimate the probability score for each user, which is widely

used for computing influence spread. Starting from a set of

seed users, it simulates the diffusion process 5,000 times.

Each newly activated user has a single chance to activate his

neighbors independently. If no more new activated node exist,

the simulation process ends. To assess the performance of

diffusion prediction, we also utilize AUC, MAP, and P@N

as evaluation measures.

The experimental results of various methods on Digg and

Flickr are presented in Table III. We observe that the pro-

posed Inf2vec always achieves the best performance on both

datasets. The experimental results indicate that representation

models is able to effectively capture the influence propagation

information. We also present the results of In2vec-L for

diffusion prediction task in Table IV. The performance of

Inf2vec-L is worse than Infvec, which indicates the importance

of similarity of user interest. It is also worth noting that

Monco-Carlo simulation with IC model is extremely time

consuming [1], while representation models can complete the

prediction task in much shorter time. For example, Inf2vec

uses 41 seconds and Emb-IC uses 9,246 seconds to finish the

diffusion prediction task on Digg.

3) Visualization: One interesting application is to produce

visualizations of the learned representations. Each node u has

two vectors Su and Tu, and hence we concatenate them as

one representation vector for user u. Since the representations
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Dataset Method AUC MAP P@10 P@50 P@100

Digg

DE 0.6183 0.0173 0.0121 0.0145 0.0132
ST 0.6874 0.1064 0.6735 0.3841 0.3091
EM 0.7095 0.1241 0.6261 0.4364 0.3572
Emb-IC 0.6649 0.1047 0.5458 0.3912 0.3286
MF 0.8677 0.1347 0.5087 0.4059 0.3389
Node2vec 0.6606 0.0219 0.0810 0.0718 0.0556
Inf2vec 0.8904 0.1793 0.7386 0.4750 0.3932
(stdev σ) (0.0002) (0.0015) (0.0214) (0.0107) (0.0049)

Flickr

DE 0.6177 0.0026 0.0025 0.0048 0.0041
ST 0.6840 0.0242 0.1215 0.0871 0.0685
EM 0.7479 0.0260 0.1115 0.0773 0.0636
Emb-IC 0.7582 0.0199 0.0955 0.0754 0.0622
MF 0.8699 0.0280 0.1044 0.0832 0.0703
Node2vec 0.6233 0.0023 0.0010 0.0053 0.0048
Inf2vec 0.8778 0.0301 0.1254 0.0943 0.0759
(stdev σ) (0.0011) (0.0004) (0.0054) (0.0009) (0.0007)

TABLE III
THE RESULTS OF DIFFUSION PREDICTION ON DIGG AND FLICKR

Results of Inf2vec-L for Activation Prediction Task
Dataset AUC MAP P@10 P@50 P@100
Digg 0.8649 0.1837 0.4880 0.2996 0.2576
Flickr 0.7974 0.0437 0.1058 0.0783 0.0665

Results of Inf2vec-L for Diffusion Prediction Task
Dataset AUC MAP P@10 P@50 P@100
Digg 0.7326 0.0928 0.5886 0.3165 0.2622
Flickr 0.8148 0.0219 0.0845 0.0677 0.0594

TABLE IV
THE RESULTS OF INF2VEC-L ON DIGG AND FLICKR.

are proposed to capture influence propagation, the nodes in

frequent social influence pairs should be near in the latent

space. For example, if pair (u → v) is frequently observed

in episodes, then the representation of u should be close to

representation of node v. We investigate three latent repre-

sentation models (MF, Node2vec, and Inf2vec) and the Emb-

IC. Although Emb-IC is an IC-based method, it also learns

representations of nodes.

We show the visualization result of four methods on Digg

dataset in Figure 6. Based on the extracted social influence

pairs in Digg, we select the 10,000 most frequent pairs, which

cover 524 nodes. We map the 524 nodes into a 2-dimensional

space by the t-SNE algorithm [31]. Particularly, we highlight

the top-5 most frequent social influence pairs, where the two

nodes in a pair are marked with same symbol. For instance,

the 2 circles represent two nodes in an influence pair. As

shown in Figure 6(d), each pair of symbols are always close

to each other, which indicates that their representations can

effectively capture their propagation relationships. However

for other models (Emb-IC, MF, and Node2vec), some pairs of

nodes are far away. The visualization result shows that Inf2vec

is able to learn meaningful representations for social influence.

C. Sensitivity and Efficiency

1) Effect of Parameters: To investigate the effect of ag-

gregation function F() in Eq. 7, we report the experimental

results for activation prediction task on Digg and Flickr in

Table V. We consider 5 evaluation metrics: AUC, MAP ,

P@10, P@50, P@100. For all evaluation metrics, the larger

value means better performance. For Digg dataset, the Ave

aggregation achieves the best performance except P@100. The

highest score of P@100 belongs to Latest. Overall, the Ave
performs better than Latest. For Flickr, the Ave obtains the

highest values for all evaluation metrics. Therefore, in our

experiments, we use Ave as the default aggregation function.

Dataset F() AUC MAP P@10 P@50 P@100

Digg

Ave 0.8898 0.2732 0.6255 0.4412 0.3687
Sum 0.8631 0.1320 0.2002 0.1164 0.1125
Max 0.8856 0.2429 0.5567 0.3895 0.3397
Latest 0.8890 0.2669 0.6014 0.4297 0.3705

Flickr

Ave 0.8127 0.0614 0.1491 0.1043 0.0837
Sum 0.7943 0.0276 0.0251 0.0335 0.0340
Max 0.8136 0.0486 0.1067 0.0865 0.0727
Latest 0.8080 0.0545 0.1286 0.0946 0.0766

TABLE V
THE RESULTS OF AGGREGATION FUNCTIONS ON DIGG AND FLICKR

To investigate the effect of number of dimension K, we

show the MAP results by varying K in Figure 7. Generally,

the MAP increases with the increase of K because high

dimensions can better embody the influence relationships. The

performance drops when K becomes too large, which may be

caused by learning too many parameters based on relatively

sparse observations. The result implies that the highest MAP

may be obtained between K = 50 and K = 100. In addition,

as analyzed in Section IV-B, the computational cost increases

linearly with the increase of K, and thus the larger value of K
needs more running time. Therefore, considering the trade-off

between running time and accuracy, we set K = 50 by default

in our experiments.

To study the influence of context length threshold L, we

show the MAP results with various L in Figure 8. Overall,

the performance increases with the increase of L because more

training instances can be exploited to learn node embedding.

The MAP with L = 100 on Flickr dataset is slightly worse

than L = 50, which may be caused by the over-fitting of

learning process. With a larger L, more influence context

nodes are generated by Algorithm 1, which leads to higher

computational cost. Empirically, we set L = 50 for a trade-off

between effectiveness and running time.

2) Efficiency: Next, we investigate the efficiency for eval-

uated algorithms. We compare the running time of Inf2vec

model and Emb-IC, which is the state of the art algorithm [10].

Based on the IC model, Emb-IC [10] employs the EM

framework [2] to learn representations. Empirically, these two

methods would converge after 10-20 iterations. Therefore, we

report the running time of one iteration with different K in

Figure 9. For both methods, the running time increases with

number of dimension K. We can find that the running time

of Inf2vec is much less than Emb-IC model. For example,

Inf2vec is 6 times (12 times) faster than Emb-IC method on

Digg (Flickr), when K is set as 50.

Note that Inf2vec generates more nodes in the influence

context by Algorithm 1. If we exploit the same setting as Emb-

IC, i.e., only exploit extracted social influence pairs (without

Algorithm 1), running time of one iteration of our method is

reduced to 32 (120) times less than Emb-IC on Digg (Flickr).
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(a) Emb-IC (b) MF (c) Node2vec (d) Inf2vec

Fig. 6. The visualization of learned representations for Digg dataset.
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Fig. 7. Effect of number of dimension K on Digg and Flickr.
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Fig. 9. Running time of one iteration on Digg and Flickr.

Overall, the results suggest that Inf2vec runs much faster than

Emb-IC and can be adopted for large-scale datasets.

D. Case Study

To provide intuitive understanding of our embedding

model, we additionally investigate a case study on citation

networks. The purpose of this case study is to compare

the embedding model with conventional influence learning

model. We utilize the “DBLP-Citation-network-V9” dataset

(https://aminer.org/citation) [34], which collects the authors

and references of 3.6M papers. We choose the papers related

to data engineering including ICDE, SIGMOD, VLDB, KDD,

ICDM, CIKM, TKDE, TODS, and TOIS. Finally, we get 4,345

papers with 4,259 authors. If a paper cites a reference, then

the authors of the reference would influence the authors of

the paper. In this way, we obtain 138,046 author influence

relationships. We randomly select 80% as training set, and

20% as test set.

To capture social influence, embedding model learns pa-

rameters of nodes while conventional model learns parameters

of edges. To make fair comparison, we only exploit first-

order social influence pairs in embedding model. Given the

influence pairs, we learn authors’ representations by Eq. 4.

For conventional model, we learn the probabilities by the ST

model [3]. Given a test author, we attempt to predict top-

10 researchers that cite the publications of test author. For

embedding model, we utilize Eq. 7 to compute the likelihood

score of being influenced. While for conventional influence

learning model, we run 5,000 Monto-Carlo simulations to

calculate the score.

Table VI shows the predicted top-10 researchers that would

be influenced by 3 test authors. Here we examine three

authors with most papers: Michael Stonebraker, Hector Garcia-

Molina and Rakesh Agrawal. By using embedding model and

conventional model respectively, we predict 10 followers that

would cite their papers. Sign “+” indicates that this person

indeed cites test author’s papers, i.e., there is an influence

relationship in test set. Sign “-” means that we do not observe

such influence relationship in test set.

As summarized in the last row of Table VI, embedding

model can identify more true followers of each test author. In

addition, we conduct quantitative evaluation of the top-10 pre-

diction for all the test authors in test set. The average precision

of embedding model is 0.1863, which is much better than the

average precision of conventional model (0.0616). This would

be explained by two reasons. First, the citation relationships

are very sparse. The conventional model fails to estimate ac-

curate influence probabilities from the sparse observation data.

The embedding model is able to learn representations of nodes

from the limited number of citation relationships. Second, the

embedding model directly predicts followers by the learned

parameters without relying on any underlying diffusion model.

However the conventional model relies on the IC model, which

may not be accurate. Overall, experimental results demonstrate

that the embedding model can effectively capture the academic

citation relationships among researchers, which validates the

idea of using embedding model for learning social influence.

VI. CONCLUSION

In this paper, we study the social influence embedding

problem, which is to represent each user with latent vectors.

We propose a new algorithm Inf2vec, which incorporates

three factors: network structure, influence propagation, and

similarity of user interest. The key technical contribution
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Author Michael Stonebraker Hector Garcia-Molina Rakesh Agrawal

Method Embedding Model Conventional Model Embedding Model Conventional Model Embedding Model Conventional Model

Top-10
predicted
followers

Hans-Jrg Schek (-) Stephen Todd (-) Dennis R. McCarthy (-) Stephen Todd (-) Raymond A. Lorie (+) Raymond A. Lorie (+)
W. Kevin Wilkinson (-) Mosh M. Zloof (+) Marek Rusinkiewicz (+) Mosh M. Zloof (-) Morton M. Astrahan (+) Morton M. Astrahan (+)
Mosh M. Zloof (+) Gerhard Jaeschke (-) JC Freytag (+) Raymond F. Boyce (-) Peter Klahold (+) Carlo Zaniolo (-)
Avraham Leff (+) Jeffrey F. Naughton (-) Jeffrey Goh (+) Franois Bancilhon (-) Rajeev Rastogi (-) Patricia G. Selinger (+)
Marie-Anne Neimat (-) Catriel Beeri (-) Waqar Hasan (-) Jeffrey F. Naughton (-) Calton Pu (-) Raymond F. Boyce (-)
Kyuseok Shim (-) Hans-Jrg Schek (-) Gabriel M. Kuper (-) Carlo Zaniolo (-) R. Erbe (+) Stephen Todd (-)
Hans-Peter Kriegel (+) S. Bing Yao (+) Franois Bancilhon (-) David Maier (-) Tobin J. Lehman (-) Mosh M. Zloof (-)
George Samaras (+) Yehoshua Sagiv (-) King-Ip Lin (-) Lawrence A. Rowe (-) Andreas Reuter (+) Gerhard Jaeschke (-)
Harry K. T. Wong (-) Arie Shoshani (-) Dennis Shasha (-) Michael Hammer (-) Raymond T. Ng (+) C. Mohan (+)
Roberta Cochrane (-) Serge Abiteboul (-) Gio Wiederhold (-) Gerhard Jaeschke (-) Alexander Tuzhilin (+) Vincent Y. Lum (-)

Accuracy 4/10 2/10 3/10 0/10 7/10 4/10

TABLE VI
PREDICTION OF TOP-10 FOLLOWERS ON CITATION NETWORK

lies in the approach of generating influence context, which

combines the local social influence context and global user

similarity context. We conduct extensive experiments on two

real datasets. The empirical results demonstrate that the pro-

posed Inf2vec model significantly outperforms the baselines.

Several interesting research problems exist for future explo-

ration. First, users’ social behaviors are influenced by other

factors, such as topical features. It is interesting to develop

some methods to model the topic-aware influence propagation.

Second, the proposed Inf2vec is not limited to using random

walks to generate context. We can investigate other approaches

for context generation to incorporate more factors related to

social influence.
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