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Abstract—As a fundamental problem in social influence prop-
agation analysis, learning influence parameters has been exten-
sively investigated. Most of the existing methods are proposed
to estimate the propagation probability for each edge in social
networks. However, they cannot effectively learn propagation
parameters of all edges due to data sparsity, especially for the
edges without sufficient observed propagation. Different from
the conventional methods, we introduce a novel social influence
embedding problem, which is to learn parameters for nodes
rather than edges. Nodes are represented as vectors in a low-
dimensional space, and thus social influence information can
be reflected by these vectors. We develop a new model Inf2vec,
which combines both the local influence neighborhood and global
user similarity to learn the representations. We conduct extensive
experiments on two real-world datasets, and the results indicate
that Inf2vec significantly outperforms state-of-the-art baseline
algorithms.

I. INTRODUCTION

Online social networks, such as Facebook, Twitter,
LinkedIn, Flickr, and Digg are platforms that are used for
spreading ideas and messages. Users’ behaviors and opin-
ions are highly affected by their friends on social networks,
which is defined as social influence. Motivated by various
applications, e.g., viral marketing [1], social influence studies
have attracted extensive research attention. One fundamen-
tal problem for social influence study is to learn influence
parameters from observations [2], [3], [4], [5], [6], [7], [8].
We can observe a sequence of actions of users on social
networks. For example, users like a story on Digg — which
is a news sharing website, and then their friends may like
the story as well. Based on users’ online behaviors, we
aim at learning parameters to reflect the social influence.
The process of modeling social influence can benefit many
tasks, such as predicting who will be influenced over the
social networks. Various methods [2], [3], [4], [9], [10] have
been proposed to learn the influence parameters, and most
of them learn diffusion probability for each edge. However,
due to the sparsity of propagation observations, these methods
cannot effectively estimate the influence parameters for all
the edges, especially for the edges without sufficient observed
propagations. Moreover, all these methods only consider the
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social influence in estimating influence parameters, but do not
consider other factors, such as similarity of user interest.

Network embedding [11], [12], [13], [14], [15] has been
recently proposed to represent each user in a latent low-
dimensional space. The structure of a network is captured by
the learned representations of users.

Inspired by the network embedding approaches, we inves-
tigate a new approach for modeling social influence. Instead
of directly estimating propagation probability of each edge,
we attempt to learn representation of each node, such that the
social influence is reflected by the representations of nodes
in a latent low-dimensional space. This approach has two
advantages. First, it can help to effectively identify the hidden
influence relationships among users. For instance, given that
user uq can influence user ug, and user us can affect both
user us and user uy, then user u; probably is also able to
influence u4. However, such relationships cannot be explicitly
captured by previous models[2], [3]. Second, it can alleviate
the challenge caused by sparse observation data. In particular,
existing models cannot effectively learn probabilities for the
edges without observed influence propagation. For instance, if
no social influence has been observed on a link (u,v), it is
hard to estimate the influence probability P,,. In contrast,
embedding model can learn the representation of node w
and node v respectively, and then estimate the diffusion
relationship between v and v.

To the best of our knowledge, none of the existing work
on learning influence models jointly captures the influence
propagation and network embedding, and none of previous
work considers user interest similarity. To fill this gap, we
propose a novel research problem: social influence embed-
ding. This problem aims to effectively embed the social
influence propagation in a low-dimensional latent space. The
challenges of this problem are threefold. First, we need to
model multiple factors that would influence users’ online
actions, including social network structure, past influence
propagations, and similarity of user interests. Second, how
to effectively learn representations of nodes based on the
sparse observed propagation data? Third, the learning process
should be efficient such that we can handle large-scale social
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networks. To address these challenges, we develop a new
representation model called Inf2vec to learn social influence
embedding.

The key of Inf2vec model is how to generate influence
context, which is a set of users that would be influenced
by a given user, from the observed propagations. However,
it is nontrivial to generate influence context since we can
merely observe users’ actions, but do not know who are
indeed affected by a given user. In this work, we consider
two constituents for generating influence context. First, we
employ local influence propagation neighborhood. Given a
social network and a set of action observations, we extract
a propagation network, and utilize a random-walk strategy
on the propagation network to produce a set of users. These
users act as local influence context for the given user. Second,
we consider the similarity of user interest. A user’s behavior
can be influenced not only by his friends, but also by the
user’s individual preferences (as to be analyzed in Section III).
Intuitively, users with similar interests are more likely to
perform the same action. To incorporate the effect of user
interest similarity, for a given user, we randomly sample
a set of users who perform the same action as the global
user similarity context. With the two constituents, we are
able to incorporate three factors in learning node embedding:
local influence context reflects network structure and influence
propagation, while global user similarity context represents
the factor of user interests. Based on the generated influence
context, Inf2vec leverages the word2vec technique [16], [17]
to learn the representations for social influence embedding.

The main contributions are summarized as follows.

« We propose a new framework to learn influence parame-

ters from observations, which is a fundamental problem
for social influence analysis. Specifically, we investigate
a novel social influence embedding problem, which is to
represent the influence propagation information in a low
dimensional latent space. Different from most previous
studies on learning influence parameters, we learn the
latent representation of each node, instead of learning
the propagation probability of every edge. To the best of
our knowledge, this is the first work that directly utilizes
representation of nodes to capture social influence.
We propose a new algorithm Inf2vec to learn nodes’
representations. The novelty of this algorithm is gener-
ating influence context, which combines both the local
influence context and the global user similarity context.
Consequently, our approach is able to incorporate three
factors: network structure, influence diffusion, and simi-
larity of user interests. However, none of previous work
on learning influence parameters considers user interest.
We conduct extensive experiments on two real-life
datasets. The empirical results demonstrate that Inf2vec
significantly outperforms the state-of-the-art baselines.

II. RELATED WORK

With the proliferation of online social networks, a great
deal of social influence data has been generated. Such data
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enable the influence propagation analysis in online social
networks. Many research problems are proposed for influence
propagation analysis, such as inferring the underlying diffusion
network [18], [6], [7], topic-aware influence analysis [5],
[9], and temporal dynamics of influence [4], [8]. One of
the fundamental research problems in influence propagation
analysis is to learn influence parameters [2], [3], [19], [20],
[21] from a given social network and action log, which is the
focus of our work. Therefore, in this section we review related
work on learning influence parameters.

We first introduce two prevalent influence diffusion models,
which are widely used in previous work to capture social
influence. One is Independent Cascade (IC) Model, in which
each newly activated node u affects its neighbors indepen-
dently. Consider a directed graph G = (V, &), where each
edge (u,v) € € is associated with influence probability P,,.
Let A, be the users that are affected at step ¢. Starting with
an initial set of seeds Ag, other users in that graph would be
activated by these seeds. Each node v € A; tries to activate its
inactive friends at time ¢+ 1. If one neighbor w is activated, w
will switch from inactive to active. Irrespective of whether
v succeeds, v loses its ability to affect its inactive friends in
subsequent rounds. If no more newly activated node exists,
the whole process ends. The other is Liner Threshold Model
(LT), in which an inactive node becomes active if the sum
of the weights of the edges with active neighbors exceeds
the threshold. Majority of the previous influence parameter
learning algorithms [2], [3], [10] are based on these two
prevalent models. In contrast, we propose a new data-driven
algorithm to directly capture diffusion information from real-
life dataset, without any prior assumption of spread models.

We proceed to review the related work on learning influence
parameters based on the aforementioned spread models. Most
of existing methods directly estimate the diffusion probability
for each edge [2], [3], [10]. Goyal et al. [3] propose to
estimate the propagation probabilities using the co-occurrence
counting. Specifically, the Maximum Likelihood Estimator is
employed to infer the probability: P,, = %, where A2,
is the number of times that u successfully influences v and
A, is the total number of trials. This approach is simple
and efficient. Another type of methods utilize Expectation
Maximization (EM) technique to learn the diffusion proba-
bilities [2], [9], [10]. Saito et al. [2] propose an EM method
to infer the probability P,, for the IC model. Barbieri et al. [9]
extend the EM framework to learn the topic-aware propagation
probability P7,, where z indicates a topic. Goyal et al. [21]
further propose a credit distribution model that directly learns
the top-k influencers from past propagation traces. All the
previous studies do not consider the user interest similarity.
More importantly, due to the sparsity of available propagation
data, these existing approaches are not able to effectively learn
the influence parameters.

Recently, Bourigault et al. [10] aims at learning the prob-
abilities of edges based on an embedded cascade model. The
social influence information of two users is captured by the
Euclidean distance between their representations. Compared



with our method, this approach has several limitations. First,
it does not explicitly utilize the network structure, which is
important for social influence analysis. In that work, social
links are created. It creates a link (uj,us) if and only if ug
performs an action before user us. This may not be true, since
a user can be influenced by other users only if real social
relationships exist such that this user can watch the activity of
others. Second, the proposed approach is specifically designed
for the IC model and fails to incorporate user interest factor to
model user’s online behaviors. Last but not least, the proposed
algorithm is very slow for large-scale networks. It employs the
EM technique [2], which is time consuming.

Our work is also related to the work on network embed-
ding [11]. Generally, network embedding problem is to learn
the representation of each node in a latent low-dimensional
space such that the network structure can be preserved. The
recent network embedding methods [11], [12], [13], [22], [15]
utilize the word2vec technique [17], [16], which is developed
for learning representations of words. Perozzi et al. [11]
propose the Deepwalk model, which first generates context
with random walks and then update the representations with
skip-gram [17], and utilize a hierarchical softmax method [23]
to solve it. Tang et al. [12] design the LINE algorithm,
which is able to preserve both the local and global network
structure by using the first-order and second-order proximity.
LINE utilizes negative sampling technique to approximate the
softmax. Grover et al. [13] develop the node2vec model for
network embedding. To incorporate homophily and structural
equivalence, node2vec defines a diverse notion of a node’s
network neighborhood. A biased random walk procedure is
designed to explore flexible neighborhood. Yang et al. [22]
develop a semi-supervised learning method for network em-
bedding. They jointly exploit the class label and network
structure to learn the embedding. Ribeiro et al. [15] exploit
the word2vec technique to preserve structural identity for
node representation. Wang et al. [14] develop a deep learning
architecture to address network embedding problem. Different
from existing network embedding methods, we additionally
consider influence propagation and similarity of user interest.
Therefore, our task is more challenging.

III. SocCIAL INFLUENCE EMBEDDING

In this section, we first present the observation and analysis
on real-life datasets. Based on the data analysis, we give the
definition of social influence propagation.

A social network can be modeled as a graph G = (V,€)
where V is the set of users and £ is the set of edges. An
edge (u,v) indicates that user u is a friend of user v. We
are also given an action log .4, which records users’ online
behaviors. The action log A contains a set of tuples in the form
of (u,1, ti), which denotes that user u performs action ¢, e.g.,
like a story or a photo, at time ¢¢,. Each item 4 corresponds to
one diffusion episode D; = {(u,t)}, which is a set of users
who adopt action ¢ in chronological order.

Before introducing the observation and problem statement,
we discuss two assumptions.
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« If we observe that user u performs an action before user
v, and if there is also a directed link (u,v) in social
network, then we assume that user u influences user v.
This assumption is widely made in previous studies on
learning influence probability, such as [2], [3], [9]. The
underlying intuition of the assumption is that if user v
lists user u as a friend, user v may watch the activity of
user u and be affected by user w.

For the users that perform identical actions, we assume
that they share similar user interest. This assumption is
widely adopted in user behaviour analysis and recom-
mendation systems [24]. Individual interest plays an im-
portant role in users’ behaviors, and users have different
interests [9]. By exploiting this assumption, we consider
the user interest for modeling users’ online behaviors.

A. Data Observations

1) Datasets: To study the social influence on social net-
works, we use two publicly available datasets, which are also
used in previous work on learning social influence propagation
parameters. One is Digg, which contains information about
stories displayed on the front page of Digg (digg.com) in June
2009 [25]. The Digg dataset comprises 68K users connected
by 823K edges. The dataset also contains Digg votes, each of
which records users’ voting on a particular story and the voting
time. The other dataset is Flickr, which contains a friendship
graph and a list of favorite marking records of the photo
sharing social network (www.flickr.com) [26]. There are 162K
users connected by 10M edges. The statistics of two datasets
are stated in Table I. Each action contains the information of
(user,item, time). We observe that the action data is very
sparse. It is challenging to effectively learn social influence
propagation parameters based on such sparse data.

Dataset | #User #Edge #ltem #Action

Digg 68,634 823,656 3553 2,485,976

Flickr 162,663 | 10,226,532 | 14,002 | 2,376,230
TABLE 1

STATISTICS OF DIGG AND FLICKR DATASET

2) Observations: Given a social graph and its action log,
we extract the social influence pairs based on the first assump-
tion. We define the social influence pairs as follows.

Definition 1: (Social Influence Pair) Given a social net-
work G = (V, ) and a diffusion episode D;, social influence
pair (u; — u;) exists if it satisfies: (1) u; € V and u; € V;
() (ug,uy) € & 3 ty,, < t';].

For a user u;, if his/her friend u; performs the same action
after u;, then there exists a social influence pair (u; — u;)
between them. In this way, we get 7.9M social influence pairs
for Digg and 5.3M pairs for Flickr. Each social influence pair
(u; — wuy) contains a source user u; and a target user u;.
To examine the characteristics of social influence pairs, we
plot distributions of the source user frequency and target user
frequency on Digg and Flickr dataset.

Figure 1 illustrates the distribution of source users on Digg
and Flickr. We observe that the source user frequency follows



a power-law distribution. The high frequency of a user being
source user indicates that this user can influence many users
and thus is influential. Most of the users are not influential,
while some users are extremely influential on both social
networks. Similarly, as shown in Figure 2, the distribution
of target users also follows the power-law distribution. It
demonstrates that some users are more likely to be influenced
by their friends.
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Fig. 1. Distributions of users being source users on Digg and Flickr. The
X-axis presents the number of times an user acts as a source user and the
Y-axis shows the count of such users.
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Fig. 2. Distributions of users being target users on Digg and Flickr. The
X-axis presents the number of times an user acts as a target user and the
Y-axis shows the count of such users.

To investigate the effect of social influence on users’ online
behaviors, we compute the cumulative distribution function
(CDF) of the count of friends that have performed the same
action before a user. Figure 3 shows the CDF on Digg and
Flickr. In Digg (resp. Flickr) dataset, the CDF of x = 0 is
0.7 (resp. 0.5), which indicates that 70% ( resp.50%) users
conduct an activity without any influence from their friends.
Meanwhile, 30% (resp. 50%) users perform an action after at
least one of his/her friends does that. Since a user may see
his/her friends’ online activity, we assume that this user would
be influenced by his friends. This observation demonstrates
that although social influence plays a significant role in the
decision of online behaviors for users, but the users’ behaviors
are also affected by other factors.

B. Problem Statement

Given a social network and its action log, modeling in-
fluence propagation aims to infer the influence probabilities
between users. As a fundamental problem of social influence
analysis in social networks, learning influence parameters has
been investigated in several proposals [3], [2], [4], [10]. Fig-
ure 4(a) shows the basic idea of these existing social influence
learning problems, which learn the propagation probability for
each edge. Generally, these problems attempt to estimate the
probabilities of |£| edges.
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Different from existing studies, we investigate a novel
research problem: social influence embedding. We aim to
represent the social influence propagation in a low-dimensional
latent space. In this problem, we attempt to learn the repre-
sentations of |V| nodes in the given network. The basic idea
of social influence embedding is shown in Figure 4(b), where
we learn the representations for nodes: {uy, ua, us, ug, us}.

In social influence embedding, the propagation relationship
between two users is modeled by the similarity between their
vectors. Note that influence propagation is directed. To reflect
the direction of social influence, user « has two vectors in K
dimensional space: S, € R¥ acts as the source representation,
which indicates the capability to influence other users; while
T, € R acts as the target representation, which represents
the tendency of being affected by other users. Here, the number
of dimension K is a tunable parameter, and its value is
determined empirically.
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Fig. 4. Social influence learning on social networks.

In social influence analysis, we need to consider the global
property for each user. On the one hand, intuitively, some
users, such as movie stars and politicians, are more influential
than ordinary users in social networks. On the other hand,
some users are more inclined to be affected by others. These
intuitions can be explained by Figure 1 and Figure 2. However,
such global property cannot be reflected by the two latent
vectors that we will learn for each user. To better model
the social influence, we additionally introduce two terms:
influence ability bias b, reflects the overall ability of user
u to affect others, and conformity bias b;, reflects a user’s
inclination to be influenced by others [27].

We are now ready to define the social influence embedding
problem as follows.



Definition 2: (Social Influence Embedding Problem)
Given a social network G = (V, £), an action log A = {D,},
where D; is a diffusion episode, and the number of dimension
K, we aim to learn: (1) source embedding S,, € RX and target
embedding T,, € R™ in K dimensional latent space for each
user u, as well as (2) influence ability bias b,, and conformity
bias b~u for each user wu.

Compared with existing influence learning work that es-
timates probabilities for edges [2], [3], [10], our solution to
the social influence embedding problem aims to better capture
the social influence propagation by effectively capturing the
influence relations among users and handling the data sparsity.
In addition, the existing methods are designed for particular
influence spread models, e.g., the IC model and the assumed
influence spread models cannot take into consideration user
similarity factor. In contrast, we aim to incorporate user
similarity into parameter learning.

IV. INF2VEC REPRESENTATION MODEL

We proceed to present our proposed Influence-to-vector
(Inf2vec) method to address the challenges mentioned in
Section I for the social influence embedding problem. We first
present how to generate the social influence context. Then we
state the procedure to learn representations of nodes based on
the generated influence context.

A. Generating Influence Context

Given a user, we need to identify the users who are probably
influenced by the user, which is called as influence context
of the user. However, given a social network and a diffusion
episode, we cannot exactly know the influence context. In
addition, the social influence would spread in the social
network, i.e., a user may influence other persons through
the intermediate users. Furthermore, it is very important to
incorporate similarity of user interest in the influence model,
although it is challenging to incorporate such additional infor-
mation. We next present our approach to generate the influence
context, including local influence context and global similarity
context.

1) Local Influence Context: Given a social network G
and an episode D, we can obtain corresponding social in-
fluence pairs. However, the extracted social influence pairs
only reflect the first-order propagation, i.e., whether a user
influences his/her friends. The social influence would spread
from one user to other users, who are not confined to the
first-order neighbors. For example, given two social influence
pairs (u; — wug) and (ug — wus), we can infer that user
u; may affect us indirectly. Therefore, we need to consider
such high-order influence propagation. Consequently, we can
further obtain an influence propagation network by combining
all the influence pairs. For each episode D;, we build a
propagation network, which records how the information about
i propagates in the social network G.

Definition 3: (Influence Propagation Network) Given a
social network G = (V,€) and a diffusion episode D;, the
propagation network is G; = (V;, &;), which satisfies: (1) V; C
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V and & C &; (2) For each (u,v) € &, there is a social
influence pair (u — v) in diffusion episode D;.
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/.:‘.\ — | )
/
|

| Influence propagation |
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(ug, 1), (us, 2), (ug, 3), (us, 4), (wq, 5)
Episode
- J
Fig. 5. An example of building influence propagation networks.

Figure 5 illustrates the idea of obtaining influence propaga-
tion networks. The example social network contains 5 users:
u1,Us, Us, Ug, us. Each episode contains the sequential action
of users. Based on the social network and episode data, we
extract all the social influence pairs. For example, since user
uy performs the action before user us, we can obtain a social
influence pair (uy — us). Similarly, we obtain other three
social influence pairs: {(ua — us), (ua — wuy), (us — u1)}-
By combining these influence pairs, we get the influence
propagation network.

The propagation network G; is a subset of the social network
G. The influence propagation network is a directed acyclic
graph due to the time constraint. Each node may have multiple
children and also may have several parents.

Based on the propagation network, we consider the high-
order influence in social networks. We utilize a random walk
with restart process to model a user’s influence spread in the
influence propagation network. This approach has two benefits.
First, it can simulate the influence spread sequences, and thus
high-order influence can be considered. Second, it can produce
more influence pairs by additionally considering high-order
influence. Hence we can alleviate the challenge caused by
the sparsity of diffusion data. Note that A. Goyal et al. [21]
utilize a similar strategy to solve sparsity issue. They propose
a credit distribution model to assign influence in propagation
network. However, they only exploit first-order and second-
order influence propagation. With random walk process, our
method can capture higher-order propagation.

The random walk process reflects the local influence neigh-
borhood. Given an influence propagation network G; and a user
u, we generate the influence context set C? , which contains
the users that are probably influenced by user u. We utilize
a random walk with restart strategy to generate C. Starting
from user u, it randomly chooses one neighbor to visit. Based
on the currently visited user, it randomly samples one neighbor
of this user to visit next. At each step, it has some probability
to go back to user u (In our work, we set the restart ratio as
0.5 by following default setting of the work [13]). To limit the



size of Cft, we use a length threshold Ly. The random walk
process stops when Ly is reached.

2) Global User Similarity Context: As shown in Figure 3,
users’ online behaviors are not always attributed to social
influence. In this work, we further consider the user preference
similarity for generating influence context. User preference
has been shown very important to model users’ behaviors in
recommendation systems [24]. A user’s online action reflects
his/her personalized interest. The users with similar interest are
more likely to have similar behaviors. Given a propagation
network G; (Vi, &), all the nodes in V; have performed
action ¢, which means that these users are interested in the
same item. However, existing methods do not consider such
information. Moreover, it is very hard to integrate user interest
similarity in the conventional IC model, which is commonly
used in existing studies on influence parameter learning [2],
[10]. To address this issue, we consider the user interest
similarity when generating influence context C?.

To capture the user interest similarity, we additionally
consider the users who perform the same action. Given a
user u in propagation network G; = (V;,&;), we randomly
sample a set of users, denoted by Lg, in V;. Note that the local
influence context only reflects the local neighborhood, while
the samples of similar users can reflect the global context.
Hence, we consider these sampled users as the global user
similarity context.

3) Algorithm for Generating Influence Context: Next, we
propose an algorithm for generating the influence context
pair (u,C%) in the propagation network by combining the
local influence context and global user similarity context. The
pseudo code for generating influence neighbors is shown in
Algorithm 1. Given a user u € V;, we aim to generate the
influence context C?. To balance the contribution of these two
components, we utilize a component weight a. We generate
(Lp = L - «) local influence neighbors by using a random
walk starting at user w (line 2). Next, we randomly sample
(Ly = L-(1— «)) users from the nodes in V; (line 3). By
this way, the influence context set C? consists of two types of
nodes (line 4). The time complexity of Algorithm 1 is O(L),
since we generate L nodes as the context.

Algorithm 1: Generating Influence Context

input : Propagation network G; = (V;, &), user u € V;,
length threshold L, component weight o
output: The user and its influence context (u, C,)
1 Ci+0,C0,C, 0,
2 C1 + (L - @) nodes by random walk from G; starting at u ;
3 C2 + L- (1 — «) nodes by uniformly sampling from V;;
4 Cﬁ «— C1+Cs;
s return (u, C});

B. Learning Representations

The next step of social influence embedding is how to
effectively model the relationships between users and their
influence contexts.
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As shown in Section III, the social influence observations
follow power law distribution, which is the same as the
word frequency distribution in natural language. This finding
motivates us to utilize the word2vec technique [17], [16]
to learn the latent representation for each user. Word2vec
has been demonstrated to capture the semantic relationships
among words very well. Recently word2vec has been adopted
for many other applications such as learning network embed-
ding [11], [13] and modeling user’s sequential behaviors [28].

We exploit the skip-gram architecture [17], which is to
predict the context of a given user. The key of influence
embedding is to estimate the probability of observing the influ-
ence context P(C!|u) that are generated with corresponding
episode D;. Assuming that the users {v € C!} are indepen-
dent with each other, and then the probability Pr(C%|u) is
determined by each independent probability Pr(v|u).

Pr (C;\u) = H Pr(vlu)
veCl
For each episode D;, we can generate a list of (u,C?)
tuples, which is denoted by Pp,. We consider all the observed
episodes D; € A, and attempt to maximize the log probability
of them. Therefore, we define the objective function to be
maximized as follows.

o=> > Y logPr(vfu)

Di€A (u,C},)ePp, veC},

In order to calculate this objective function, we need to
compute the propagation probability from u to v. In our
approach, the probability Pr(v|u) is computed by their repre-
sentations: S, is the representation of user u as source, 7, is
the representation of user v as target, b, denotes the influence
ability bias of user u and b, indicates the conformity bias of
user v. Given a user u, we predict the probability that user
v being influenced by user u, which can be formulated as a
softmax function. The probability Pr(v|u) is defined as:

(€Y

(@)

3

where S, - T,, denotes the inner product of S, and T, and
Z(u) =3, ey 5 Twtbutbu) s the normalization term.

It is computationally expensive to directly compute Eq. (3),
since calculating Z(u) needs to enumerate each item w € V.
To alleviate this issue, we adopt the negative sampling [16],
which is popularly used to compute softmax functions. The
idea of negative sampling is straightforward: instead of enu-
merating all the nodes, it only considers a small set of sampled
nodes. We randomly generate several negative instances for
each node v € V. Then we employ the sampled negative
instances to approximate the softmax function:

Pr(ofu) = v T [7(0)

log Pr(v|u) = logo(zv) + Z log o(—2zw), “4)
weN
where z, = (S, - T, + by, + b,) and z, = (S, - Ty + by, +

bw), N is the set of randomly sampled negative instances and
o(x) = m is sigmoid function. In Eq. 4, the first term
reflects the observed instances, and the second term models
the sampled negative instances.



We exploit Stochastic Gradient Descent (SGD) method [29]
to learn all the parameters. In each step, we update the
parameters © by calculating the gradient:

0+ 06+ 'ya% (log(Pr(v|u))), (5)

where -y is the learning rate and % indicates the gradient of
parameters ©. Based on Eq. 4, the gradient for corresponding

parameters can be computed as follows.

0
55, = (1= o) Tt 3 (ot T

o 1o}

i (o) Su g = (ot -8
o = (1—o(z)) + u;\/(*ﬁ(zw))

0 = —0o(z i = (—0o(z

ab; =(1 (2v)), 81);, (—o(zw))

The proposed Inf2vec approach is summarized in Algorithm
2. It contains two parts: the first part (lines 3—-8) generates
the social influence context, and the second part (lines 9-17)
learns the parameters based on the generated influence context
for each user. The Inf2vec algorithm starts with initializing
the parameters (line 1). For each episode D; in action log,
we obtain the propagation network (V;,&;) (line 4) and get
C? for each u € V; by the randomized procedure described
in Algorithm 1 (line 6). We utilize a list Pp, to store the
generated (u, C%) tuples for episode D; (line 7). Then Pp,
is inserted to P, which denotes the tuples generated from all
episodes (line 8).

After that, we learn the representations based on these
generated tuples. In each tuple (u, C!), we consider each node
v € C? and we update the parameters by negative sampling
(lines 12-16). We first update the parameters for (u,v) (line
13): S., Ty, by, b;,. Then we randomly sample a set of negative
instances N (line 14). Following that, we update parameters
for each negative node w (lines 15-16): 5’1,,7111;,131,,717;;. The
parameters are updated by the SGD method in Eq. 5, and
gradient of parameters can be computed by Eq. 6.

The time complexity of the learning algorithm is O(|P] -
L)Y+ O(I-|P|-L-|N|-K), which contains two components:
generating context (lines 3-8) and learning representation
(lines 9-17). |P| is the size of generated (u,C!) tuples, T
is the number of iterations until converge, |N| is the number
of negative sampling (typically, 5-10). Number of dimension
K indicates the length of representation vectors for each node,
which means that we need to learn O(K) parameters for
each node. Compared with the second component, the first
component can be ignored. Hence, the time complexity is
O -|P|-L-|N|- K). The space complexity of Inf2vec is
O(]V|- K), since we need to learn K-dimensional vectors for
each node v € V.

C. Predicting Influence Propagation

Next, we introduce how to utilize learned representations of
users to predict the influence propagation. A given user might
be influenced by multiple users. Hence we need to take all
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Algorithm 2: Inf2vec

input : Social network G = (V, &), action log A = {D;},
learning rate -y, component weight «, number of
dimension K

output: Representation for each node u € V: source

embedding S, € R¥, target embedding T, € R,
influenceability bias b,,, conformity bias b,,
1 Initialize S, and T, with uniform distribution [—+, 1),
by < 0, by < 0;
2 Initialize P < (;
3 foreach D; € A do

4 Extract propagation network G; = (V;, &)

5 foreach v« € V; do )

6 Generate influence context C,, by Algorithm 1;
7 Insert (u, Cy,) into Pp, ;

8 | Insert Pp, into P ;

9 repeat

10
11
12

foreach Pp, € P do
foreach (u,C.) € Pp, do
foreach v € C¥ do
Update Sy, Ty, bu, by
Sample a set of negative instances N ;
foreach w € N do
L Update Su,Tw,bu,bZU;

17 until convergence;
18 return S, Ty, by, b, for each user u

the possible social influence into account. Given a set of users
S, that may affect user v, the likelihood that user v being
influenced by S, is defined by

F ({z(u,v),u € Su}), @)
where x(u,v) = Sy - Ty + by + b, reflects the likelihood that
user v is affected by user u, and F() is an aggregation function
to merge the influence from S,,. In our work, we consider four
common aggregate functions as follows:

o Ave: take the average of all the elements,
F(x1, T2, ...p) = %
e Sum: linearly combine all the elements,

F(x1, @0, 0 y) = Y iy T
o Max: choose the most significant factor by taking the
maximum value, F(z1, %, ...2,) = Maz(x1, T2, ...Tp).
e Latest: only consider  the latest  element,
F(x1,x9,...20) = Zn.
The performance of these four aggregation functions will
be evaluated in our experiments.

V. EXPERIMENTS
A. Experimental Setup

1) Dataset: In the experiments, we use the two datasets,
Digg and Flickr, introduced in Table I. In addition, we show a
case study over a DBLP citation network dataset, which will
be introduced in Section V-D.

For the action log A = {D;} of Digg and Flickr, we
randomly select 80% episodes as training set, 10% as tuning
set, and 10% as test set.



2) Parameter Setting: The default number of dimensions is
K = 50. The length threshold L is set as 50 by default, i.e.,
the size of influence context is limited to 50. Based on the
empirical study on tuning set, we set the default component
weight & = 0.1. The learning rate v is set as v = 0.005.
To predict the influence propagation, the default aggregation
function is Ave in Eq. 7.

All methods are implemented in C++ and experiments are
conducted on a windows server, with a single core Intel(R)
Xeon (R), 2.80 GHz CPU and 60 GB memory.

3) Evaluated Methods: We evaluate the performance of the
following approaches.

DE: degree-based method. The probability of each edge
is set as P, = m, where Indegree(v) is the
number of friends of user v. This method is widely used
in social influence analysis, such as influence maximiza-
tion problem [1].

ST: the static model with maximization likelihood esti-
mator method [3]. The probability P,, of edge (u,v) is
computed by P, ‘3{“‘ , where A, is the number of
actions that user u perfourms before user v and A, is the
total number of actions that u performs.

EM: the Expectation-Maximization method based on the
independent cascade (IC) model [2], which learns the
propagation probability of each edge.

Emb-IC: the embedded cascade model [10], which is
the state-of-the-art approach to learn representation of
influence diffusion. Emb-IC is based on the IC model, and
the parameters are inferred by an EM algorithm similar
to the algorithm [2].

MF: the user-user matrix factorization method by
Bayesian Personalized Ranking [30]. The entry of the
matrix is the frequency that two users take the same
action. If two users do not share any common action,
the entry is set as 0. Note that this method only reflects
the global user similarity.

Node2vec: the node2vec model [13], which is the state-
of-the-art algorithm for network embedding. Note that
node2vec only considers the social network structure.
Inf2vec: the proposed model as described in Algorithm 2,
which considers both the local influence context and
global user similarity context.

Note that the first 4 methods (DE, ST, EM, and Emb-IC) are
based on the IC model. The probability of user v performing
an action is calculated by the social influence from his friends:

Pr(v) =1- ] (1= Puw),
u€ESy
where P,, is the transition probability from w to v, and S, is
the set of friends who may influence user v.

The other two baselines (MF and Node2Vec), as well as
our method Inf2vec are latent representation models. Given a
set of users .S, that may affect user v, the likelihood score is
computed by Eq. 7.

4) Evaluation Tasks: For performance evaluation, we con-
sider three tasks as follows.

®

948

o Activation prediction. Following the evaluation
method [3], we include this task, which is to predict
whether a user will be influenced by his friends. Note
that it only considers first-order influence propagation.
Diffusion prediction. This is to follow the evaluation
method in work [10]. Given a set of seed users, we
attempt to identify users that are influenced by them.
Different from activation prediction, diffusion prediction
additionally considers the high-order propagation.
Visualization. To provide better understanding of learned
representations, we map them to a 2-dimensional space
by using a dimension reduction tool [31].

Next, we will discuss the experimental results of these
tasks. In addition, we also report results about sensitivity and
efficiency, as well as a case study on a citation network.

B. Comparison with Baselines

1) Activation Prediction: To evaluate the quality of learned
influence parameters, we utilize the evaluation strategy in the
work [3]. Given a test episode D; = {(u,t!)}, which contains
the chronological order of users, we want to predict the users
who will perform the action 7 in the future. We denote the users
who have already performed a given action as activated users.
The set of activated users is initially empty. We read records in
D; one by one. Once we read a record (u, t!), we insert u into
the set of activated users. These activated users would further
affect other users. A user v is a candidate user if at least one
of his friends has performed the action. Let S, denotes the
set of activated neighbors who may affect user v. In this way,
we can obtain candidate users and their activated friends, i.e.,
{(v,S,)}. We attempt to predict whether a candidate user v
will be activated by S,,.

Given S,,, we calculate the likelihood score of activating
candidate user v: IC-based methods utilize Eq. 8, while latent
representation methods employ Eq. 7. Then we rank all the
candidate users by their scores. The ground-truth users are
those who have actually been activated by their neighbors,
i.e, those in D;. Ideally, the ground-truth users can be ranked
higher than the other users. Since we evaluate the performance
based on the ranking, it is fair and reasonable to compare IC-
based methods and representation-based methods.

We consider three evaluation metrics.

« AUC. Following the work [3], we utilize the area under
curve (AUC) value of Receiver Operating Characteristic
(ROC). Different from previous work [3] that sets a
threshold value to make predictions, which is difficult to
set, we utilize the ranking scheme [32] to calculate the
AUC value.

MAP. Since only a very small fraction of test cases
are positive (be activated by its neighbors) and most of
them are negative (not be activated by its neighbors),
mean average precision (MAP) is informative for such
imbalanced situation[33].

P@N. We are interested in the positive cases that users
are affected by their friends, and thus we investigate the



precision for top-N predictions. In our experiments, we
set N as 10, 50 and 100 respectively.

[ Dataset]| Method [ AUC [ MAP | PQ10 | PQ50 [ PQ@I00]
DE 0.4144 | 0.0170 | 0.0098 | 0.0101 | 0.0099

ST 0.8619 | 0.1790 | 0.5221 0.2917 | 0.2344

EM 0.8623 | 0.2071 | 0.4994 | 0.3482 | 0.2959

Digg Emb-IC 0.8072 | 0.1503 | 0.4721 0.2621 0.2203
MF 0.8568 | 0.1691 | 0.2783 | 0.2813 | 0.2614
Node2vec | 0.6437 | 0.0322 | 0.0323 | 0.0513 | 0.0434

Inf2vec 0.8893 | 0.2744 | 0.6401 | 0.4389 | 0.3729

(stdve o) | (0.0003) (0.0033) (0.0128) (0.0100) (0.0028)

DE 0.4782 | 0.0166 | 0.0071 0.0055 | 0.0050

ST 0.7738 | 0.0566 | 0.0953 | 0.0710 | 0.0623

EM 0.7479 | 0.0582 | 0.1056 | 0.0787 | 0.0655

Flickr | Emb-IC 0.7213 | 0.0242 | 0.0433 | 0.0421 | 0.0374
MF 0.7785 | 0.0353 | 0.0656 | 0.0517 | 0.0451
Node2vec | 0.5693 | 0.0065 | 0.0017 | 0.0044 | 0.0043

Inf2vec 0.8068 | 0.0606 | 0.1564 | 0.1043 | 0.0824

(stdve o) | (0.0022) (0.0029) (0.0035) (0.0008) (0.0007)

TABLE II

THE RESULTS OF ACTIVATION PREDICTION ON DIGG AND FLICKR

The experimental results of various methods on Digg and
Flickr are presented in Table II. In each table, we show the
results of the five evaluation metrics. We observe that the
proposed method Inf2Vec consistently outperforms all the
other methods. In this paper, the reported results of latent
representation models are the average value of 10 runs, and we
provide the standard deviation score (stdev o) of the Inf2vec
algorithm. Note that all reported improvements over baseline
methods are statistically significant with p-value < 0.05.

We find that DE gets the lowest scores on both Digg and
Flickr. The poor performance of DE method indicates that this
naive approach is not feasible for learning social influence
parameters, although it is widely used. ST estimates the
diffusion probabilities between edges based on observations,
and can achieve reasonable performance. Compared to ST,
EM utilizes a complex Expectation-Maximization technique
to learn influence parameters. Although the technique is
more complex and time consuming, the improvement is not
significant. The performance of Emb-IC is slightly worse
than ST and EM, which indicates that the Emb-IC is not
suitable for the activation prediction task. The Inf2vec model
outperforms all the IC-based methods, including ST, EM and
Emb-IC. The possible reasons are twofold. First, these IC
based methods attempt to learn the transition probability of
each edge, but it is hard for them due to the data sparsity. There
is no sufficient historical online behavior data available to
exactly estimate probabilities of edges. Second, these IC based
methods cannot incorporate the similarity of user interest,
which is an important factor in modeling people’s behaviors.

For the two latent representation based baselines, MF per-
forms reasonable well while node2vec performs worse. MF
makes use of only user interest similarity, and the reasonable
results achieved by MF demonstrate the usefulness of global
user interest similarity in learning influence parameters. But
its performance is not as good as Inf2vec, since it does not
exploit the local influence context. This comparison indicates
that local influence context is helpful. The reason for the poor
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performance of node2vec is perhaps that it considers only the
social network structure, but not the other two factors. This
result indicates that directly utilizing the existing algorithms
of network embedding does not work for the social influence
embedding problem.

To further investigate the impact of user similarity, we
consider a special case of the proposed Inf2vec by setting
the component weight « 1.0 in Algorithm 2. In this
setting, Inf2vec only considers the local influence propagation
context, which is denoted as Infvec-L. We report the results of
Inf2vec-L in Table IV. As indicated by the results of activation
prediction task, Inf2vec-L consistently performs worse than
Inf2vec. Inf2vec-L only utilizes local influence context, but
not global user similarity context, to learn representation of
nodes. This indicates that the global user similarity context is
helpful to model the social influence embedding.

2) Diffusion Prediction: Next, we investigate the perfor-
mance of various methods for diffusion prediction task [10].
Given a set of activated users, we attempt to identify the
set of users who will be influenced by them. For each test
episode, we exploits the first 5% users as the seed users, and
the rest 95% users as ground truth. Seed users are initially
activated users, and they may affect the other users. In this
task, we need to consider both the first-order (1-hop) and
high-order (multiple-hop) influence propagation of seed users.
Similar to activation prediction, we calculate the score of
each node given the seed users. For representation models
(FMC, MF, Node2vec, and Inf2Vec), we directly employ Eq. 7
to compute the score. For IC-based models (DT, ST, EM,
and Emb-IC), we exploit the Monte-Carlo simulation [1] to
estimate the probability score for each user, which is widely
used for computing influence spread. Starting from a set of
seed users, it simulates the diffusion process 5,000 times.
Each newly activated user has a single chance to activate his
neighbors independently. If no more new activated node exist,
the simulation process ends. To assess the performance of
diffusion prediction, we also utilize AUC, MAP, and P@N
as evaluation measures.

The experimental results of various methods on Digg and
Flickr are presented in Table III. We observe that the pro-
posed Inf2vec always achieves the best performance on both
datasets. The experimental results indicate that representation
models is able to effectively capture the influence propagation
information. We also present the results of In2vec-L for
diffusion prediction task in Table IV. The performance of
Inf2vec-L is worse than Infvec, which indicates the importance
of similarity of user interest. It is also worth noting that
Monco-Carlo simulation with IC model is extremely time
consuming [1], while representation models can complete the
prediction task in much shorter time. For example, Inf2vec
uses 41 seconds and Emb-IC uses 9,246 seconds to finish the
diffusion prediction task on Digg.

3) Visualization: One interesting application is to produce
visualizations of the learned representations. Each node w has
two vectors S, and T, and hence we concatenate them as
one representation vector for user u. Since the representations



Dataset| Method [ AUC | MAP | PQ10 | PQ50 | PQ100]
DE 0.6183 | 0.0173 | 0.0121 | 0.0145 | 0.0132
ST 0.6874 | 0.1064 | 0.6735 | 0.3841 | 0.3091
EM 0.7095 | 0.1241 0.6261 | 0.4364 | 0.3572

Digg Emb-IC 0.6649 | 0.1047 | 0.5458 | 0.3912 | 0.3286
MF 0.8677 | 0.1347 | 0.5087 | 0.4059 | 0.3389
Node2vec | 0.6606 | 0.0219 | 0.0810 | 0.0718 | 0.0556
Inf2vec 0.8904 | 0.1793 | 0.7386 | 0.4750 | 0.3932
(stdev o) (0.0002) (0.0015)] (0.0214) (0.0107)| (0.0049),
DE 0.6177 | 0.0026 | 0.0025 | 0.0048 | 0.0041
ST 0.6840 | 0.0242 | 0.1215 | 0.0871 | 0.0685
EM 0.7479 | 0.0260 | 0.1115 | 0.0773 | 0.0636

Flickr Emb-IC 0.7582 | 0.0199 | 0.0955 | 0.0754 | 0.0622
MF 0.8699 | 0.0280 | 0.1044 | 0.0832 | 0.0703
Node2vec | 0.6233 | 0.0023 | 0.0010 | 0.0053 | 0.0048
Inf2vec 0.8778 | 0.0301 | 0.1254 | 0.0943 | 0.0759
(stdev o) (0.0011)] (0.0004) (0.0054) (0.0009)| (0.0007)|

TABLE IIT

THE RESULTS OF DIFFUSION PREDICTION ON DIGG AND FLICKR

Results of Inf2vec-L for Activation Prediction Task
Dataset | AUC MAP | PQ10 | PQ50 | PQ100
Digg 0.8649 | 0.1837 | 0.4880 | 0.2996 | 0.2576
Flickr 0.7974 | 0.0437 | 0.1058 | 0.0783 | 0.0665

Results of Inf2vec-L for Diffusion Prediction Task
Dataset | AUC MAP | PQ10 | PQ50 | PQ100
Digg 0.7326 | 0.0928 | 0.5886 | 0.3165 | 0.2622
Flickr 0.8148 | 0.0219 | 0.0845 | 0.0677 | 0.0594

TABLE IV

THE RESULTS OF INF2VEC-L ON DIGG AND FLICKR.

are proposed to capture influence propagation, the nodes in
frequent social influence pairs should be near in the latent
space. For example, if pair (v — v) is frequently observed
in episodes, then the representation of u should be close to
representation of node v. We investigate three latent repre-
sentation models (MF, Node2vec, and Inf2vec) and the Emb-
IC. Although Emb-IC is an IC-based method, it also learns
representations of nodes.

We show the visualization result of four methods on Digg
dataset in Figure 6. Based on the extracted social influence
pairs in Digg, we select the 10,000 most frequent pairs, which
cover 524 nodes. We map the 524 nodes into a 2-dimensional
space by the t-SNE algorithm [31]. Particularly, we highlight
the top-5 most frequent social influence pairs, where the two
nodes in a pair are marked with same symbol. For instance,
the 2 circles represent two nodes in an influence pair. As
shown in Figure 6(d), each pair of symbols are always close
to each other, which indicates that their representations can
effectively capture their propagation relationships. However
for other models (Emb-IC, MF, and Node2vec), some pairs of
nodes are far away. The visualization result shows that Inf2vec
is able to learn meaningful representations for social influence.

C. Sensitivity and Efficiency

1) Effect of Parameters: To investigate the effect of ag-
gregation function F() in Eq. 7, we report the experimental
results for activation prediction task on Digg and Flickr in
Table V. We consider 5 evaluation metrics: AUC, M AP,
P@10, PQ50, PQ100. For all evaluation metrics, the larger
value means better performance. For Digg dataset, the Ave
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aggregation achieves the best performance except P@Q100. The
highest score of P@100 belongs to Latest. Overall, the Ave
performs better than Latest. For Flickr, the Ave obtains the
highest values for all evaluation metrics. Therefore, in our
experiments, we use Ave as the default aggregation function.

[ Dataset] F() | AUC [ MAP [ PQ10 | P@50 [ PQ@100
Ave 0.8898 | 0.2732 | 0.6255 | 0.4412 | 0.3687
Digg Sum 0.8631 | 0.1320 | 0.2002 | 0.1164 | 0.1125
Mazx 0.8856 | 0.2429 | 0.5567 | 0.3895 | 0.3397
Latest | 0.8890 | 0.2669 | 0.6014 | 0.4297 | 0.3705
Ave 0.8127 | 0.0614 | 0.1491 | 0.1043 | 0.0837
Flickr Sum 0.7943 | 0.0276 | 0.0251 | 0.0335 | 0.0340
Max 0.8136 | 0.0486 | 0.1067 | 0.0865 | 0.0727
Latest | 0.8080 | 0.0545 | 0.1286 | 0.0946 | 0.0766
TABLE V

THE RESULTS OF AGGREGATION FUNCTIONS ON DIGG AND FLICKR

To investigate the effect of number of dimension K, we
show the MAP results by varying K in Figure 7. Generally,
the MAP increases with the increase of K because high
dimensions can better embody the influence relationships. The
performance drops when K becomes too large, which may be
caused by learning too many parameters based on relatively
sparse observations. The result implies that the highest MAP
may be obtained between K = 50 and K = 100. In addition,
as analyzed in Section I'V-B, the computational cost increases
linearly with the increase of K, and thus the larger value of K
needs more running time. Therefore, considering the trade-off
between running time and accuracy, we set KX = 50 by default
in our experiments.

To study the influence of context length threshold L, we
show the MAP results with various L in Figure 8. Overall,
the performance increases with the increase of L because more
training instances can be exploited to learn node embedding.
The MAP with L = 100 on Flickr dataset is slightly worse
than L = 50, which may be caused by the over-fitting of
learning process. With a larger L, more influence context
nodes are generated by Algorithm 1, which leads to higher
computational cost. Empirically, we set L = 50 for a trade-off
between effectiveness and running time.

2) Efficiency: Next, we investigate the efficiency for eval-
uated algorithms. We compare the running time of Inf2vec
model and Emb-IC, which is the state of the art algorithm [10].
Based on the IC model, Emb-IC [10] employs the EM
framework [2] to learn representations. Empirically, these two
methods would converge after 10-20 iterations. Therefore, we
report the running time of one iteration with different K in
Figure 9. For both methods, the running time increases with
number of dimension K. We can find that the running time
of Inf2vec is much less than Emb-IC model. For example,
Inf2vec is 6 times (12 times) faster than Emb-IC method on
Digg (Flickr), when K is set as 50.

Note that Inf2vec generates more nodes in the influence
context by Algorithm 1. If we exploit the same setting as Emb-
IC, i.e., only exploit extracted social influence pairs (without
Algorithm 1), running time of one iteration of our method is
reduced to 32 (120) times less than Emb-IC on Digg (Flickr).
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Fig. 6. The visualization of learned representations for Digg dataset.
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Overall, the results suggest that Inf2vec runs much faster than
Emb-IC and can be adopted for large-scale datasets.

D. Case Study

To provide intuitive understanding of our embedding
model, we additionally investigate a case study on citation
networks. The purpose of this case study is to compare
the embedding model with conventional influence learning
model. We utilize the “DBLP-Citation-network-V9” dataset
(https://aminer.org/citation) [34], which collects the authors
and references of 3.6M papers. We choose the papers related
to data engineering including ICDE, SIGMOD, VLDB, KDD,
ICDM, CIKM, TKDE, TODS, and TOIS. Finally, we get 4,345
papers with 4,259 authors. If a paper cites a reference, then
the authors of the reference would influence the authors of
the paper. In this way, we obtain 138,046 author influence
relationships. We randomly select 80% as training set, and
20% as test set.
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To capture social influence, embedding model learns pa-
rameters of nodes while conventional model learns parameters
of edges. To make fair comparison, we only exploit first-
order social influence pairs in embedding model. Given the
influence pairs, we learn authors’ representations by Eq. 4.
For conventional model, we learn the probabilities by the ST
model [3]. Given a test author, we attempt to predict top-
10 researchers that cite the publications of test author. For
embedding model, we utilize Eq. 7 to compute the likelihood
score of being influenced. While for conventional influence
learning model, we run 5,000 Monto-Carlo simulations to
calculate the score.

Table VI shows the predicted top-10 researchers that would
be influenced by 3 test authors. Here we examine three
authors with most papers: Michael Stonebraker, Hector Garcia-
Molina and Rakesh Agrawal. By using embedding model and
conventional model respectively, we predict 10 followers that
would cite their papers. Sign “+” indicates that this person
indeed cites test author’s papers, i.e., there is an influence
relationship in test set. Sign “-” means that we do not observe
such influence relationship in test set.

As summarized in the last row of Table VI, embedding
model can identify more true followers of each test author. In
addition, we conduct quantitative evaluation of the top-10 pre-
diction for all the test authors in test set. The average precision
of embedding model is 0.1863, which is much better than the
average precision of conventional model (0.0616). This would
be explained by two reasons. First, the citation relationships
are very sparse. The conventional model fails to estimate ac-
curate influence probabilities from the sparse observation data.
The embedding model is able to learn representations of nodes
from the limited number of citation relationships. Second, the
embedding model directly predicts followers by the learned
parameters without relying on any underlying diffusion model.
However the conventional model relies on the IC model, which
may not be accurate. Overall, experimental results demonstrate
that the embedding model can effectively capture the academic
citation relationships among researchers, which validates the
idea of using embedding model for learning social influence.

VI. CONCLUSION

In this paper, we study the social influence embedding
problem, which is to represent each user with latent vectors.
We propose a new algorithm Inf2vec, which incorporates
three factors: network structure, influence propagation, and
similarity of user interest. The key technical contribution



Author

Michael Stonebraker

Hector Garcia-Molina

Rakesh Agrawal

Method | Embedding Model [ Conventional Model Embedding Model [ Conventional Model || Embedding Model [ Conventional Model |
Hans-Jrg Schek (-) Stephen Todd (-) Dennis R. McCarthy (-) Stephen Todd (-) Raymond A. Lorie (+) Raymond A. Lorie (+)
W. Kevin Wilkinson (-) Mosh M. Zloof (+) Marek Rusinkiewicz (+) Mosh M. Zloof (-) Morton M. Astrahan (+) Morton M. Astrahan (+)
Mosh M. Zloof (+) Gerhard Jaeschke (-) JC Freytag (+) Raymond F. Boyce (-) Peter Klahold (+) Carlo Zaniolo (-)
Top-10 Avraham Leff (+) Jeftrey F. Naughton (-) Jeffrey Goh (+) Franois Bancilhon (-) Rajeev Rastogi (-) Patricia G. Selinger (+)
predicted Marie-Anne Neimat (-) Catriel Beeri (-) Wagqar Hasan (-) Jeffrey F. Naughton (-) Calton Pu (-) Raymond F. Boyce (-)
Followers Kyuseok Shim (-) Hans-Jrg Schek (-) Gabriel M. Kuper (-) Carlo Zaniolo (-) R. Erbe (+) Stephen Todd (-)
Hans-Peter Kriegel (+) S. Bing Yao (+) Franois Bancilhon (-) David Maier (-) Tobin J. Lehman (-) Mosh M. Zloof (-)
George Samaras (+) Yehoshua Sagiv (-) King-Ip Lin (-) Lawrence A. Rowe (-) Andreas Reuter (+) Gerhard Jaeschke (-)
Harry K. T. Wong (-) Arie Shoshani (-) Dennis Shasha (-) Michael Hammer (-) Raymond T. Ng (+) C. Mohan (+)
Roberta Cochrane (-) Serge Abiteboul (-) Gio Wiederhold (-) Gerhard Jaeschke (-) Alexander Tuzhilin (+) Vincent Y. Lum (-)
Accuracy | 4/10 2/10 3/10 0/10 7/10 4/10

TABLE VI
PREDICTION OF TOP-10 FOLLOWERS ON CITATION NETWORK

lies in the approach of generating influence context, which
combines the local social influence context and global user
similarity context. We conduct extensive experiments on two
real datasets. The empirical results demonstrate that the pro-
posed Inf2vec model significantly outperforms the baselines.

Several interesting research problems exist for future explo-
ration. First, users’ social behaviors are influenced by other
factors, such as topical features. It is interesting to develop
some methods to model the topic-aware influence propagation.
Second, the proposed Inf2vec is not limited to using random
walks to generate context. We can investigate other approaches
for context generation to incorporate more factors related to
social influence.
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