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ABSTRACT

Crowdsourcing is becoming increasingly important in entity res-

olution tasks due to their inherent complexity such as clustering

of images and natural language processing. Humans can provide

more insightful information for these difficult problems compared

to machine-based automatic techniques. Nevertheless, human work-

ers can make mistakes due to lack of domain expertise or serious-

ness, ambiguity, or even due to malicious intents. The bulk of lit-

erature usually deals with human errors via majority voting or by

assigning a universal error rate over crowd workers. However, such

approaches are incomplete, and often inconsistent, because the ex-

pertise of crowd workers are diverse with possible biases, thereby

making it largely inappropriate to assume a universal error rate for

all workers over all crowdsourcing tasks.

We mitigate the above challenges by considering an uncertain

graph model, where the edge probability between two recordsA and

B denotes the ratio of crowd workers who voted YES on the ques-

tion if A and B are same entity. To reflect independence across dif-

ferent crowdsourcing tasks, we apply the notion of possible worlds,

and develop parameter-free algorithms for both next crowdsourcing

and entity resolution tasks. In particular, for next crowdsourcing,

we identify the record pair that maximally increases the reliabil-

ity of the current clustering. Since reliability takes into account the

connected-ness inside and across all clusters, this metric is more ef-

fective in deciding next questions, in comparison with state-of-the-

art works, which consider local features, such as individual edges,

paths, or nodes to select next crowdsourcing questions. Based on de-

tailed empirical analysis over real-world datasets, we find that our

proposed solution, PERC (probabilistic entity resolution with im-

perfect crowd) improves the quality by 15% and reduces the overall

cost by 50% for the crowdsourcing-based entity resolution.

1 INTRODUCTION

Entity Resolution (ER) is the task of disambiguating manifestations

of real-world entities in various records by linking and clustering

[7]. For example, there could be different ways of addressing the

same person in text, or several photos of a particular object. Also

known as Deduplication, this is a critical step in data cleaning and
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analytics, knowledge base construction, comparison shopping, health

care, and law enforcement, among many others.

Although machine-based techniques exist for ER tasks, past stud-

ies have shown that crowdsourcing can produce higher quality re-

sults, especially for more complex jobs such as classification and

clustering of images, video tagging, optical character recognition,

and natural language processing [8]. Various crowdsourcing ser-

vices, e.g., Amazon’s Mechanical Turk (AMT) and CrowdFlower

[17], allow individuals and commercial organizations to set up tasks

that humans can perform for certain rewards. Since a crowd tasker

does not work for free, bulk of the literature in this domain aims at

minimizing the cost of crowdsourcing, while also maximizing the

overall ER result quality [2, 20, 22, 25]. However, human workers

can be error-prone due to lack of domain expertise, individual bi-

ases, task complexity and ambiguity, or simply because of tiredness,

and malicious behavior [9, 19]. As an example, even considering an-

swers from workers with high-accuracy statistics in AMT, we find

that the average crowd error rate can be up to 25% (we define aver-

age crowd error rate in Section 5). State-of-the-art works elude this

severe concern by majority voting [20, 22, 25], that is, to ask the

same question to multiple people and consider the majority answer;

or by assigning a universal error rate for crowd taskers [19]. Many

other works bypass this as an orthogonal problem to crowdsourced

ER, because there are various approaches to compute and reduce

crowdsourcing biases and errors, including [4, 14, 16].

Challenges. Considering the quality assurance as an orthogonal

problem to crowdsourced ER, however, is a substandard solution.

Instead, approaching both these problems together improves the

quality of ER, which is evident from recent works [9, 19, 23]. The

majority voting is often unreliable because spammers and low-paid

workers may collude to produce incorrect answers [16]. Besides,

the tasker crowd is large, anonymous, transient, and it is usually

difficult to establish a trust relationship with a specific worker [14].

Each batch of tasks is solved by a group of taskers who may be

completely new, and one may not see them again, thereby making

it unrealistic to assign a universal error rate for all workers over all

crowdsourcing tasks.

The major contribution of our work is to develop an end-to-end

pipeline for the crowdsourcing-based ER problem, taking into con-

sideration potential crowd errors. While crowdsourcing a few ques-

tions might be sufficient for an initial clustering of records (e.g., one

may crowdsource only n − 1 record pairs so to construct a spanning

tree with all n records), in order to improve the ER quality, specifi-

cally in the presence of crowd errors, crowdsourcing of more record

pairs is necessary. Perhaps, asking the crowd about all O(n2) record

pairs would provide a very good ER accuracy, but that is prohibi-

tively expensive. Hence, the critical question that we investigate in

this work is as follows.Given the current clustering, what is the best



datasets accuracy: # crowdsourced questions % crowdsourcing cost

F1- MinMax DENSE PC-Pivot PERC reduction by PERC over

measure [9] [19] [23] [this work] MinMax DENSE PC-Pivot

Allsports 0.9 13.6K 16.0K 21.7K 11.7K 13.97% 26.87% 46.08%
Gymnastics 0.9 1.3K 1.5K 1.8K 0.8K 38.46% 46.67% 55.56%

Landmarks 0.9 11.0K 8.0K 16K 5.9K 46.36% 26.25% 63.12%
Cora 0.8 22.5K 14.0K ✗ 7.2K 68.00% 48.57% ✗

Table 1: Crowdsourcing cost reduction by PERC: We present the num-

ber of crowdsourcing questions required to achieve a certain accuracy

for various methods. For details, see Section 5.

record pair to crowdsource next? Our objective is two-fold: The set

of next crowdsourcing questions should be selected in a way that

increases the ER accuracy as much as as possible, at the expenses

of as few next crowdsourcing questions as possible.

Given its practical importance, not surprisingly, the problem of

identifying the next question for crowdsourced ER, in the presence

of crowd errors, has been studied recently: MinMax[9], PC-Pivot

[23], and DENSE [19]. These methods consider ad-hoc, local fea-

tures to select next questions, such as individual paths (e.g., Min-

Max), nodes (e.g., PC-Pivot), or the set of either positive or negative

edges (e.g.,DENSE, shown in Appendix). Hence, they generally fail

to capture the strength of the entire clustering, resulting in higher

crowdsourcing cost to achieve a reasonable ER accuracy.

Our Contribution.As opposed to local metrics used in prior works,

we select the next crowdsourcing question by considering the strength

of the entire clustering. Our global metric, denoted as the reliabil-

ity, follows the notion of connected-ness in an uncertain graph. In-

tuitively, reliability measures how well-connected a cluster is, and

also how well-separated two clusters are. We then systematically

identify the next crowdsourcing question, either from a weakly con-

nected cluster, or across a pair of clusters that are weakly sepa-

rated, thereby creating a balance between stronger and weaker com-

ponents in the clustering. As a consequence, our reliability-based

next crowdsourcing algorithm reduces the crowdsourcing cost sig-

nificantly, which is evident in Table 1.

Our contributions can be summarized as follows.

• For the next crowdsourcing problem, we introduce a novel

metric called “reliability” of a clustering, that measures con-

nected -ness within and across clusters by following the no-

tion of uncertain graphs (Section 3). This is more effective

than local-feature-based next crowdsourcing approaches [9,

19, 23], as demonstrated with our running example (Section 3)

and also verified in our experimental results (see Table 1).

• Using reliability-based next crowdsourcing, we develop an

end-to-end solution, PERC, for crowdsourced ER (Section 4).

Our algorithms are parameter-free in the sense that we do

not require any user-defined threshold values, and no apriori

information about the error rate of the crowd workers.

• We perform detailed experiments with four real-world datasets

using Amazon’s Mechanical Turk platform. The performance

analysis illustrates the quality, cost, and efficiency improve-

ments of our framework (Section 5).

Running Example. Consider a dataset of eight images shown in

Figure 1. Records A, B belong to famous American actress and

model, Eva Mendes; C , D to Bollywood star and lead actress of

the American television series, Quantico, Priyanka Chopra; and

E, F , G, H to Hollywood actor Tom Cruise. 80% of crowd work-

ers voted YES that both records in each of the following pairs are
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Figure 1: Running example: Edge probability denotes ratio of crowd

workers voted YES for the respective records pair to be same entity.

same: 〈A,B〉, 〈C,D〉, 〈E, F 〉, and 〈G,H 〉. All crowd workers also

answered NO for the edges between the following cluster pairs:

〈C1,C3〉, 〈C2,C3〉, 〈C1,C4〉, and 〈C2,C4〉. In this example, four

clusters C1,C2,C3 and C4 are formed, as shown in Figure 1. Our

objective is to identify the next question to crowdsource that max-

imizes the gain. It can be observed that asking a question between

clusters C3 and C4 is more beneficial because all images in C3 and

C4 belong to the same entity, and one more edge with probability

greater than 0.5 helps in merging these two clusters.

2 PRELIMINARIES

2.1 Background

Entity Resolution (ER). An ER algorithm receives an input set

of records R = {r1, r2, . . . , rn} and a pairwise similarity function F ,

and it returns a set of matching pair of records: C = {R1,R2, . . . ,Rm},

such that, Ri ∩ Rj = ϕ for all i, j, and ∪iRi = R. We call each Ri a

cluster of R, and each cluster represents a distinct real-world entity.

The partition of R into a set of clusters is called a clustering C of

R. If r1 and r2 are matching (non-matching), they are denoted by

r1 = r2 (r1 , r2).

An ER algorithm generally obeys the two following relations.

Transitivity. Given three records r1, r2, and r3, if r1 = r2 and r2 = r3,

then we have r1 = r3.

Anti-transitivity. Given three records r1, r2, and r3, if r1 = r2 and

r2 , r3, then we have r1 , r3.

Thus, a clustering C of the input set R of records is transitively

closed. One can derive the following theorem combinatorially. We

omit the proof due to limitation of space.

THEOREM 1. For n records, there can be (2n −n) different clus-

terings, where each cluster in some clustering must have between

(1,n) records.

Crowdsourced ER.We use a crowdsourcing platform such as Ama-

zon’s Mechanical Turk (AMT), which provides APIs for conve-

niently using a large number of human workers to complete micro-

tasks (also known as Human Intelligent Tasks (HITs)). To identify

whether two records belong to the same entity, we create an HIT

for the pair, and publish it to AMT with possible binary answers: A

worker needs to submit ‘YES’ if she thinks that the record pair is

matching, and ‘NO’ otherwise.
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Figure 2: Possible worlds of an uncertain graph: Three possible worlds

G5 , G6 , G7 are not clusterings, as they are not transitively closed. For

example, inG5 , A = C and C = B, butA , B, thus violating transitivity.

For mitigating crowd errors, we allow multiple workers to per-

form the same HIT. We then assign an edge with probability p(ri , r j )

between two records ri and r j , where p(ri , r j ) is the ratio of crowd

workers who voted YES on the question if ri and r j are same entity.

Uncertain Graph. Every HIT creates an uncertain, undirected edge

between the respective record pair, thereby generating an uncertain,

undirected graph G = (R, E,p), as depicted previously in Figure 1.

Each record ri ∈ R denotes a node in the graph, E ⊆ R×R represents

the set of edges between the record pairs that were crowdsourced,

and p(e) ∈ (0, 1) is the probability of the edge e ∈ E as derived

earlier. In our context, it is important to note that p(e) = 0 (i.e., all

crowd workers voted non-matching) is not equivalent to the edge e

being absent in G (i.e., the pair is not crowdsourced yet).

To reflect independence across different crowdsourcing tasks (i.e.,

each HIT can be performed by a different set of workers), we em-

ploy the well-established notion of possible world, together with the

assumption that each edge can be matching or non-matching, inde-

pendent of other edges [12]. Hence, the uncertain graph G yields

2 |E | deterministic graphs (or, possible worlds) G ⊑ G, where each

G is a pair (R, EG ), with EG ⊆ E are matching edges, and its proba-

bility of being observed is given in Equation 1.

P(G) =
∏

e ∈EG

p(e)
∏

e ∈E\EG

(1 − p(e)) (1)

Next, we have the following observation.

LEMMA 1. Every clustering of the input record set R corresponds

to some possible world of the uncertain graph G = (R, E,p). How-

ever, every possible world of G might not be a clustering of R.

The first part of the lemma is trivial (i.e., follows from the defini-

tion of a possible world), whereas the second part holds since every

possible world is not transitively closed. We demonstrate this fact

with an example in Figure 2, where three possible worlds G5,G6,

and G7 of the given uncertain graph are not clusterings.

Since every clustering corresponds to some possible world, we

define the likelihood of a clustering as the probability of the respec-

tive possible world being observed. In Figure 2, the likelihood of

the clustering {(A,B), (C)} is same as P(G4), which is 0.288.

2.2 Entity Resolution Problem

Given R,G, let us consider a clustering C = {R1,R2, . . . ,Rm } of R.

We define the likelihood of C as the probability that (1) all edges

inside every cluster Ri exist, and (2) all edges across every pair of

clusters Rj ,Rk do not exist. Since an edge can exist independent of

others, we compute the likelihood L(C) as follows.

L(C) =
∏

Ri ∈C



∏

e ∈E∩(Ri×Ri )

p(e)


×

∏

Rj ,Rk ∈C
j<k



∏

e ∈E∩(Rj×Rk )

(1 − p(e))



(2)

We formally introduce the ER problem below.

PROBLEM 1 (ENTITYRESOLUTION). Given the set R of records

and an uncertain graph G = (R, E,p), find the (transitively closed)

clustering C of R having the highest likelihood L(C).

The problem of finding the most-likely clustering (also referred

to as the maximum-likelihood clustering), however, isNP-hard, which

can be verified by a polynomial-time reduction from the NP-hard

correlation clustering problem [19].

THEOREM 2. Given an uncertain graph G = (R, E,p) over records

set R, finding the maximum-likelihood clustering of R is NP-hard.

Correlation clustering is the most natural setting for clustering

a set of records that are connected by both positive and negative

edges [10]. Many approximate and heuristic algorithms were pro-

posed for correlation clustering [6, 19]. Indeed, all prior works such

as [9, 19, 23] in the domain of crowdsourced ER, that incorporated

human error, also employed correlation clustering. Therefore, in our

PERC framework, we apply correlation clustering for the ER prob-

lem. Details about our clustering algorithm will be given in Sec-

tion 4. We shall first introduce our next crowdsourcing algorithm in

the following, which is the key contribution of this work.

3 NEXT CROWDSOURCING

We discuss our algorithm for selecting the next crowdsourcing ques-

tion. We assume that an initial (maximum-likelihood) clustering

C is already constructed from the records set R and the uncertain

graph G = (R, E,p), and now we want to identify the best entity

pair 〈ri , r j 〉 < E to crowdsource next.

3.1 Reliability of a Clustering

Intuitively, our objective is to identify a pair 〈ri , r j 〉 < E that can

improve the quality of the given clustering as much as possible.

To this end, we identify the two following “connected-ness”-based

criteria that determine the quality of a clustering C. Let us denote

C = {R1,R2, ...,Rm }, where each Ri is a cluster and represents a

distinct real-world entity.

• How well each cluster Ri is connected?

• How well every pair of clusters Rj ,Rk (j < k) is discon-

nected?

Given a clustering C = {R1,R2, ...,Rm } and the uncertain graph

G = (R,E,p), all edges inside a cluster are called YES edges, whereas

the edges across two clusters are referred to as NO edges. If e ∈ E

is an YES edge, we define its existence probability pY (e) = p(e).

On the other hand, if e ∈ E is a NO edge, we compute its ex-

istence probability as pN (e) = 1 − p(e). We derive an YES-NO
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Figure 3: Reliability of a clustering

graph GY |N = (R, E,pY |N ,L) from the uncertain graph G as fol-

lows. GY |N has the same set of nodes and edges as G, but each edge

e in GY |N has a binary label L(e), which can be either YES or No,

as defined above. For a YES edge e , its probability pY |N (e) = pY (e).

For a NO edge e , its probability pY |N (e) = pN (e). Next, we formal-

ize the notion of connectivity and disconnectivity.

DEFINITION 1 (CONNECTIVITY). Given a cluster Ri and the

YES-NO graph GY |N , the connectivity of Ri is defined as the sum of

the probability of those possible worlds of GY |N where all records

in Ri are connected by YES edges. Formally,

Connect(Ri) =
∑

G⊑GY |N

[I (Ri ,G) × P(G)] (3)

In the above equation, I (Ri ,G) is an indicator function over a

possible deterministic graph G ⊑ GY |N taking value 1 if records in

Ri are all connected (by YES edges) inG, and 0 otherwise.

DEFINITION 2 (DISCONNECTIVITY). Given a pair of clusters

Rj ,Rk (j < k) and the YES-NO graph GY |N , the disconnectivity

between Rj ,Rk is defined as the sum of the probability of those pos-

sible worlds of GY |N where at least one NO edge exists between Rj
and Rk . Formally,

Disconnect(Rj,Rk ) (4)

=

{
0 ; if (Rj × Rk ) ∩ E = ϕ

1 −
∏

(ri,rl )∈(Rj×Rk )∩E (1 − pN (ri , rl )) ; otherwise

Based on the above definition, we observe that for all i, j,k; j < k ,

the following events are independent. (1) A cluster Ri is connected,

and (2) a pair of clusters Rj ,Rk are disconnected. Therefore, one

can multiply the probability of these events to measure the over-

all quality of a clustering C. For practical reasons, we avoid multi-

plying fractions, and instead compute summation over logarithms

(Equation 5). Thus, if either of Connect(Ri) or Disconnect(Rj,Rk )

is zero, we substitute it by a very small positive fraction. Formally,

we denote this metric as the reliability of a clustering.

DEFINITION 3 (RELIABILITY). Given a clusteringC = {R1,R2,

. . . ,Rm} and the YES-NO graph GY |N , the reliability of C is de-

fined as the probability that every cluster Ri is connected and every

pair of clusters Rj ,Rk (j < k) is disconnected, i.e.,

Rel(C) =
∑

i

log (Connect (Ri )) +
∑

j<k

log
(
Disconnect

(
Rj ,Rk

) )

(5)

EXAMPLE 1. In Figure 3, we compute the reliability of the clus-

tering C = {(A,B,C), (D)}. We first construct the YES-NO graph on

the right. Then, we have: Connect(A,B,C) = 0.72, Connect(D) =

1.0, and Disconnect ((A,B,C) , (D)) = 1 − (1 − 0.8)(1 − 0.4) = 0.88.

Hence, Rel(C) = log 0.72 + log 1 + log 0.88 ≈ −0.20.
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Figure 4: Reliability-based next crowdsourcing: running example

3.2 Next Crowdsourcing Problem

We derive, for every record pair 〈ri , r j 〉 < E, the improvement in re-

liability of the already computed clustering C, if one crowdsources

the pair, and thereby assigns the edge probability p(ri , r j ). However,

one does not know p(ri , r j ) apriori. Therefore, we consider an op-

timistic scenario, that is, for all possible values of p(ri , r j ) ∈ (0, 1),

we derive what will be the maximum possible increment in Rel(C)

by crowdsourcing 〈ri , r j 〉. We select the record pair that maximally

increases Rel(C), under such optimistic assumption.

Our formulation has several desirable features, such as mono-

tonicity and improving weaker components, as stated next.

LEMMA 2. For any new edge e that we crowdsourced, Rel(C)

will increase maximally when pY |N (e) = 1.

In other words, if the new edge e is inside a cluster (i.e., YES

edge), then its probability requires to be p(e) = 1, which means

that all workers agreed on the record pair as matching. On the other

hand, if the new edge e is across two clusters (i.e., NO edge), then

its probability must be p(e) = 0, which implies that all workers

agreed on the record pair as non-matching. To put it simply, if the

next crowdsourcing result is fully consistent with our previous clus-

tering, then the quality of the clustering improves maximally.

LEMMA 3. By adding a new edge e , the reliability of C remains

the same when pY |N (e) = 0. It increases monotonically as we have

larger values of pY |N (e).

Generally speaking, the more is the ratio of workers who agree

with the previous clustering, the higher is the improvement in the

clustering quality.

LEMMA 4. For any new edge e that we included, if pY |N (e) >

0.5, the maximum-likelihood clustering, as defined in Problem 1,

remains the same for the updated graph.

This implies that if the majority of the crowd workers agree with

our previous clustering, there is no need to change the clustering.

Below, we formally introduce the next crowdsourcing problem.

PROBLEM 2 (NEXT CROWDSOURCING). Given the set R of

records, an uncertain graph G = (R, E,p), and a clustering C, find

the record pair 〈ri , r j 〉 < E, such that adding an edge (ri , r j ), with

pY |N (ri , r j ) = 1, maximally increases the reliability of C.

3.3 Demonstration with Running Example

We now demonstrate how our reliability-based next crowdsourcing

technique deals with the running example in Figure 1.

EXAMPLE 2. Figure 4 is the abstract version of our running ex-

ample in Figure 1. The clustering algorithm identifies four clusters:

C1 = {A,B}, C2 = {C,D}, C3 = {E, F }, and C4 = {G,H }. Each

cluster has connectivity 0.8. The disconnectivity values across these



clusters are as follows. Disconnect(C1,C2) = 0.82, Disconnect(C2,

C3) = 1, Disconnect(C1,C3) = 1, and Disconnect(C3,C4) = 0.79.

As Disconnect(C3,C4) is the least among all others, our algorithm

priorities crowdsourcing an edge across C3,C4. Intuitively, the sep-

aration between C3,C4 is the weakest, thus we require to ask more

questions about this separation. The reliability gain by adding a

new edge e between C3,C4, having probability pY |N (e) = 1, is

log 1− log0.79=0.10; whereas, the reliability gain by adding a new

edge e between C1,C2, with probability pY |N (e) = 1, is log 1 −

log 0.82=0.08. Hence, for next crowdsourcing, our algorithm se-

lects an edge across C3,C4. Indeed, one more edge with probability

greater than 0.5 across C3,C4 helps in merging these two clusters,

while an edge with probability less than 0.5 will make their sep-

aration stronger. This is consistent with our running example that

asking a question across clusters C3 and C4 is more beneficial.

Remarks. As demonstrated with the running example, our next

crowdsourcing method usually prioritizes the weaker components

and improves their quality, thereby creating a balance between the

quality of stronger and weaker components in the clustering. This is

evident if we consider two pairs of clusters such thatDisconnect(R1,

R2) < Disconnect(R3,R4), then our method will always prioritize a

pair 〈r1, r2〉 ∈ R1 × R2 over any other pair 〈r3, r4〉 ∈ R3 × R4, for the

next crowdsourcing. For brevity, let us denote byd1 = Disconnect(R1,

R2) and d2 = Disconnect(R3,R4). In the first case, we consider an

edge (r1, r2) with pN (r1, r2) = 1, i.e., p(r1, r2) = 0. Hence, the

increase in reliability, following Equation 5, is log(1/d1). Analo-

gously, in the second case, the increase in reliability is log(1/d2).

Since d1 < d2, the pair 〈r1, r2〉 is preferred over 〈r3, r4〉.

In case of connectivity of individual clusters, in general no such

relationship exists. However, if the connectivity of one cluster is

significantly smaller than that of the other, e.g., Connect(R1) <<

Connect(R2), it is very likely that our method will select a pair from

R1 for the next crowdsourcing problem. Let c1 = Connect(R1) and

c2 = Connect(R2). Also, assume that δ1 is the maximum increase

in c1 if we add an edge e of probability pY (e) = 1 (i.e., p(e) = 1)

in R1. Similarly, let δ2 be the maximum increase in c2 if we add an

edge e ′ of probability pY (e
′) = 1 (i.e., p(e ′) = 1) in R2. Hence, in

the first case, the increase in reliability is log(1+δ1/c1), whereas in

the second case, the increase in reliability is log(1 + δ2/c2). Since

c1 << c2, it is very likely that δ1/c1 > δ2/c2. Therefore, in such

cases, our method will prioritize a specific record pair from R1 over

all pairs from R2, for the next crowdsourcing problem.

3.4 Next Crowdsourcing Algorithm

Difficulties. A naïve algorithm to find the best record pair for next

crowdsourcing would be inefficient due to the following challenges.

• Computing the connectivity of a cluster, also known as the

all-terminal-reliability problem in device networks, is #P-hard

[12]. Hence, finding the exact connectivity value, even for a

modest size cluster, is almost infeasible.

• At each round of crowdsourcing, we identify the best record

pair not in E. Usually, the uncertain graph G is sparse, that

is, |E | << O(|R |2). Therefore, at every round, one needs to

compare O(|R |2) pairs in order to identify the best one for

next crowdsourcing.

Monte Carlo Sampling. Due to its intrinsic hardness, we tackle

the connectivity estimation problem from an approximation view-

point. We use the answer computed by Monte Carlo (MC) sam-

pling as a proxy. This is a reasonable choice as MC-sampling is

an unbiased estimator, thus by running it for a sufficiently large

number of times, its answer is expected to converge to the real an-

swer with a high probability. In particular, we first sample t pos-

sible graphs, G1,G2, . . . ,Gt of a subgraph of GY |N induced by

the nodes in some cluster Ri , according to (YES) edge probabil-

ity pY |N = pY . We then compute the ratio of possible graphs which

are connected, out of t possible graphs that were generated. This

gives the MC-estimation of connectivity for cluster Ri . To speed

up the sampling process, we combine MC-sampling with a breadth

first search (BFS) from one of the nodes in Ri [12]. If the maximum

numbers of nodes and edges in a cluster are nmax and emax , respec-

tively, then the time complexity of MC-based connectivity estima-

tion is given by O (t (nmax + emax )). Based on empirical results

over our datasets, we observed that the MC-estimator converges

with a number of samples t ≈ 1000. This is roughly the same num-

ber observed in [12] for MC-sampling based reliability estimation

over other real-world uncertain graphs.

Algorithm. The complete method for next crowdsourcing is given

in Algorithm 1. Let us denote by priority of a pair 〈ri , r j 〉 < E as

the increase in reliability of the existing clustering, when the edge

(ri , r j ) is included with probability pY |N (ri , r j ) = 1 (lines 7 and 14,

Algorithm 1). At every round, we crowdsource the record pair with

the highest priority. However, priority computation for all pairs at

every round would be expensive. We discuss below how one can

minimize the required number of priority computations.

We note that for a specific round, the priority of all the following

record pairs 〈rk , rl 〉 ∈ (Ri × Rj ) \ E, for a certain Ri and Rj , are the

same. Therefore, we compute the priority of only one record pair

across every pair of clusters (lines 11-16, Algorithm 1). Finally, if

an edge was inserted in some cluster Ri in the last round and there

is no change in the previous clustering (lines 18-24, Algorithm 1),

then the priority of the pairs inside other clusters, as well as those

across two clusters, will not change. Similarly, if an edge was in-

serted between two clusters Ri ,Rj in the last round and there is no

change in the earlier clustering (lines 25-30, Algorithm 1), the pri-

ority of the pairs inside all clusters, as well as those across other

cluster pairs, will not change. All of these reduce the priority re-

computation necessary for at most O(n2max ) pairs at every round, if

there is no change in the previous clustering.

In reality, nmax is small, around 30∼350 records, for the real-

world datasets that we have considered (and also used by state-of-

the-art approaches [9, 19, 23]). Thus, overall time complexity of our

next crowdsourcing algorithm is O
(
n2max (t (nmax + emax ))

)
. In

fact, the priority of each record pair inside a cluster can be computed

in parallel, and/or one may sample a selected number of record

pairs, uniformly at random, from the cluster; thereby further reduc-

ing the time required to select the next crowdsourcing question.

Asking Next Questions in Batches. Algorithm 1 selects a single

question to ask next to the crowd workers. Instead, one may con-

sider a batch version to issue multiple high-quality questions. For a

batch size k (k is a tunable input parameter), we select the k record



Algorithm 1 Next Crowdsourcing Algorithm

Require: Records set R , uncertain graph G = (R, E, p), clustering C

Ensure: Record pair 〈ri, r j 〉 < E to be crowdsourced next

1: Let C = {R1, R2, . . . , Rm }

2: if Clustering updated last round then

3: priority queue Q = ϕ

4: for all Ri do

5: for all 〈r j, rk 〉 ∈ (Ri × Ri ) \ E do

6: Form G′ by adding (r j, rk ) in G, with pY (r j, rk ) = 1

7: pr io(r j , rk ) = RelG′ (C) − RelG (C)

8: Insert
(
〈r j , rk 〉, pr io(r j , rk )

)
into Q

9: end for

10: end for

11: for all (Rj × Rk ), j < k do

12: Find one 〈ri, rl 〉 ∈ (Rj × Rk ) \ E

13: Form G′ by adding (ri, rl ) in G, with pN (ri, rl ) = 1

14: pr io(ri, rl ) = RelG′ (C) − RelG (C)

15: Insert (〈ri, rl 〉, pr io(ri, rl )) into Q

16: end for

/* Clustering not Updated in last round */

17: else

18: if last edge was inserted in Ri then

19: for all 〈r j, rk 〉 ∈ (Ri × Ri ) \ E do

20: Form G′ by adding (r j, rk ) in G, with pY (r j, rk ) = 1

21: pr io(r j , rk ) = RelG′ (C) − RelG (C)

22: Update
(
〈r j, rk 〉, pr io(r j, rk )

)
into Q

23: end for

24: end if

25: if last edge was inserted between Rj and Rk , j < k then

26: Find one 〈ri, rl 〉 ∈ (Rj × Rk ) \ E

27: Form G′ by adding (ri, rl ) in G, with pN (ri, rl ) = 1

28: pr io(ri, rl ) = RelG′ (C) − RelG (C)

29: Insert (〈ri, rl 〉, pr io(ri, rl )) into Q

30: end if

31: end if

32: 〈ri, r j 〉 = Q .pop()

33: return 〈ri, r j 〉

pairs having the highest priority. It is expected that by issuing mul-

tiple questions in batches, the overall quality would decrease, be-

cause one does not know the corresponding edge probabilities apri-

ori; and therefore, we compute the priority of a record pair in an

optimistic manner. However, asking questions in batches helps in re-

ducing the running time of crowdsourced ER, because many crowd

workers would be able to answer the questions in a batch in parallel.

4 THE PERC FRAMEWORK

The reliability-based next crowdsourcing method (Section 3) forms

the crux of our PERC framework. Clearly, given a set of records

and their similarity values obtained via next crowdsourcing, one re-

quires to cluster these records. We discuss our clustering technique

in Section 4.1, and then provide in Section 4.2 the complete pipeline

that combines our next crowdsourcing and clustering algorithms.

4.1 Clustering Algorithm

Given the records set R and an uncertain graph G = (R, E,p), we use

correlation clustering to find the maximum-likelihood clustering of

R (Problem 1). We recall that all prior works in crowdsourced ER,

e.g., [9, 19, 23], which incorporated human error, also employed
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Figure 5: Overview of our PERC framework

correlation clustering. Since correlation clustering is NP-hard, sev-

eral approximate and heuristic algorithms exist [6]. We empirically

compare them, and find the Spectral-Connected-Components (SCC)

technique to be the most effective one. This is also the same cluster-

ing method used in DENSE entity resolution [19].

Spectral-Connected-Components (SCC).This algorithm starts from

the record pair having the highest probability of being the same

entity, given the answers for these two records. If this probability

is higher than 0.5, SCC merges the two records into one cluster.

In each successive step, the algorithm finds the clusters with the

highest probability of being the same entity, given the answers be-

tween them. If this probability is higher than 0.5, the two clusters

are merged into one cluster. Otherwise, SCC stops merging clusters,

and returns as output the current set of clusters.

Given two clusters Ri and Rj , SCC computes the probability

Pr (Ri ,Rj ) of merging them as given in Equation 6.

Pr (Ri ,Rj )

=

∏

(rk ,rl )∈(Ri×Rj )∩E

p (rk , rl )

∏

(rk ,rl )∈(Ri×Rj )∩E

p (rk , rl ) +
∏

(rk ,rl )∈(Ri×Rj )∩E

(1 − p (rk , rl ))

(6)

Let the numbers of nodes in the uncertain graph G be n. Then,

the time complexity of SCC clustering is O(n2).

EXAMPLE 3. We demonstrate SCC clustering with our running

example in Figure 4. The algorithm identifies record pairs contain-

ing the maximum edge weight (i.e., 0.8). We initially clusters any of

A,B;C,D; E, F ; orG,H . Later, we continue to cluster another three

record pairs as they have the same maximum edge weight. Once the

four clusters C1 = {A,B},C2 = {C,D}, C3 = {E, F }, and C4 =

{G,H } are identified, we verify the edge weights across these clus-

ter. SCC merges two clusters only if the benefit of merging (Equa-

tion 6) is more than 0.5. Let us consider the merging of clusters

C1 and C2. Their probability of merging is 0.3×0.6
0.3×0.6+(1−0.3)×(1−0.6)

= 0.39. In fact, none of the cluster pairs qualify for merging, and

SCC reports C1,C2, C3, and C4 as the four clusters.



4.2 Putting Everything Together

we provide the entire pipeline of our PERC framework in Figure 5.

Given an input set R of records, and the initial uncertain graph G

(which might have no edges in the beginning, or only a few edges

based on initial crowdsourcing), we find the most-likely clustering

(MLC) C of R, with SCC algorithm. Next, we iteratively find the

best record pair 〈ri , r j 〉 and crowdsource it, until our budget is ex-

hausted, or we already find a complete (uncertain) graph over R.

After every crowdsourcing task, we add an uncertain edge between

the respective record pair, thereby updating G.
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Figure 6: Most-likely clustering (MLC) changes due to addition of

edges. Above: crowdsourcing result of 〈A, C 〉 changes MLC from

{(A, B, C)} to {(A, B), (C)}. Below: crowdsourcing result of 〈A, B 〉

changes MLC from {(A), (B, C)} to {(A, B), (C)}.

An interesting feature of our framework is that at the end of every

round, we check if the previous MLC C still remains the MLC for

the updated graph. This can be quickly verified based on Lemma 4,

that is, if the majority of the crowd workers agree with our previous

clustering, there is no need to change the clustering. Otherwise, we

recompute the newMLC and proceed to identify the best record pair

to crowdsource for this new MLC. Such re-clustering enables us to

rectify mistakes that might have been incurred at earlier rounds

due to incomplete information and crowd errors, thereby quickly

converging to a high-quality solution. We illustrate this feature of

our framework with two examples in Figure 6. As one may observe,

in both cases with the additional crowdsourcing evidences, the new

MLC is more promising than the earlier one.

While such updates in the MLC clustering are quite effective, we

empirically found that these updates happen only 20∼25% of the

times after next crowdsourcing. This illustrates that while updating

the previous clustering is critical to improve the ER quality, it does

not significantly impact the total computation time.

Dataset # Records # Entities # Record-Pairs Crowd Error Rate
Crowdsourced

All Sports 267 86 35 511 5.67% (10 ques. / pair)

Gymnastics 94 12 4 371 10.65 % (5 ques. / pair)

Landmarks 529 15 30 070 4.82 % (5 ques. / pair)

Cora 949 165 29 281 27.77 % (5 ques. / pair)

Table 2: Properties of datasets

5 EXPERIMENTAL RESULTS

We present empirical results with four real-world, benchmark datasets

(three image datasets and one text dataset). We evaluate entity res-

olution (ER) accuracy, efficiency, and crowdsourcing cost of PERC

under various initial conditions, and by asking the next crowdsourc-

ing questions one at a time and also in batches, with different crowd

errors. We compare PERC with four state-of-the-art crowdsourced

ER approaches: transitive closure (TC) clustering [20, 22, 25],Min-

Max [9], PC-Pivot [23], DENSE and bDENSE [19].

5.1 Environment Setup

The code is implemented in Python and we perform experiments on

a single core of a 32GB, 2.40GHz Xeon server. All results are aver-

aged over 10 runs. We present our results with spectral-connected-

components (SCC) based correlation clustering, as it performs the

best compared other correlation clustering methods [6, 19].
• Datasets. We use four benchmark, real-world datasets (Table 2)

from the literature of crowdsourced ER.
AllSports: The AllSports dataset [19] consists of athlete images

from different sports, with each image showing a single athlete.
Gymnastics: The Gymnastics dataset [19] contains athlete images,

but only from gymnastics, and it is more difficult to distinguish the

face of an athlete in this dataset, e.g., the athlete may be upside

down on uneven bars.
Landmarks: The Landmarks dataset [9] has images from 9 cities.

We consider a subset of the original dataset, consisting 529 images

of 15 different Landmarks.
Cora: This is a text dataset containing references of scientific pub-

lications [23]. Cora is one of the largest datasets considered in the

literature of crowdsourced ER, thus we use this dataset for demon-

strating scalability.

We use Amazon’s Mechanical Turk for crowdsourcing, and fol-

low the same setting that was employed by Verroios and Molina

in [19], e.g., considering answers from workers with high-accuracy

statistics. We omit the details due to lack of space. In particular, for

AllSports, we engage 10 workers for each task, whereas 5 workers

are employed for each task in the other datasets [9, 19, 23]. For All-

Sports and Gymnastics, due to their smaller sizes, we crowdsource

all record pairs. On the contrary, for Landmarks and Cora datasets,

we crowdsource about 22% and 7%, respectively, of all record pairs,

based on next crowdsourcing questions.

All these datasets come with the ground truth clustering results,

which we refer to as the gold standard clustering. If a worker an-

swered the record pair wrongly, then it is considered an error (Ta-

ble 2). As an example, out of 10 workers, if 8 workers answered

correct and 2 answered wrong, then the error in answering that par-

ticular records pair is 20%. Crowd error is measured as the average

of all such errors over all crowdsourced record pairs.
• Evaluation Metrics.
Accuracy: After a certain number of answers are collected by the

next crowdsourcing method, we apply ER algorithm for clustering.

To measure accuracy, we compare the output to the gold standard

clustering. Specifically, we employ precision (p) and recall (r), de-

fined as follows.

p =
#record-pairs correctly reported as matching

#record-pairs reported as matching
(7)

r =
#record-pairs correctly reported as matching

#matching record-pairs in gold clustering
(8)

Finally, we compute F1-measure, which is defined below.
F1-measure = 2pr/(p + r ) (9)

Following previous works [9, 19], we use F1-measure to demon-

strate the accuracy of PERC and other competitors.
Crowdsourcing Cost: The crowdsourcing cost denotes the total

number of distinct record pairs being crowdsourced.
Efficiency: We report the average computation time required to se-

lect the next batch of crowdsourcing questions. Clearly, this is the

runtime of the algorithm to select the next batch of questions, and
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Figure 7: Cost improvement: # next crowdsourcing questions required to reach a certain accuracy (F1-measure)
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Figure 8: Accuracy improvement (F1-measure) for next crowdsourcing
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Figure 9: Efficiency improvement: Computation time required to select a batch of next crowdsourcing questions

it excludes the crowdsourcing time (which would be similar across

different algorithms, for a given batch size).
• Compared Algorithms.

Transitive Closure (TC): This method selects, uniformly at ran-

dom, one of those record pairs for which the matching/ non-matching

relationship cannot be inferred (via transitivity and anti-transitivity)

from the existing edges. Following [20, 25], we consider major-

ity voting while deciding on the next crowdsourcing results. TC-

clustering never reaches F1-measure ≥ 0.75 over our datasets, which

is because this method does not consider conflicting evidences.

DENSE and bDENSE: DENSE [19] considers only either the set

of positive edges, or the set of negative edges between two disjoint

record sets for calculating the strength of evidences, denoted as the

ρ-ratio (for details, see Introduction). bDENSE is a batch version

of DENSE, that selects multiple questions (having higher ρ-ratios)

to ask next, thereby allowing many crowd taskers to answer those

questions in parallel. For ER, these methods apply SCC-clustering.

The authors in [19] considered majority voting to decide on the

next crowdsourcing results. Moreover, they also assigned a fixed

human accuracy of 0.9 (i.e., error rate = 0.1) on those answers.

MinMax: For ER, [9] finds all positive and negative paths between

a record pair. The weight of a path is determined by the smallest

edge weight on that path. Finally, the algorithm selects the maximum-

weight path to decide whether the records are matching or not. For

next crowdsourcing, the authors proposed a hybrid strategy that

prefers either a more certain matching pair, or a less certain non-

matching pair. As (1)MinMax only considers the maximum-weight

path (and ignores all other paths) between a record pair for both ER

and next crowdsourcing, and (2) it does not consider the length of

a path (intuitively, the error accumulated across a short-length path

would be less than that through a longer path), the method can easily

produce less effective results.

PC-Pivot: For ER, [23] uses pivot-based correlation clustering. The

clustering refinement phase consists of either splitting, where nodes

are removed from clusters; or merging, where two clusters are com-

bined. The problem is that every node is considered individually,

and edges connecting to that node are used to calculate the respec-

tive benefit. Hence, the method may fail to capture the strength of

the entire clustering, resulting in higher crowdsourcing cost in order

to achieve a reasonable ER accuracy.

5.2 Next Crowdsourcing Results

We started with different numbers of initial edges and batch sizes

based on the size of our datasets. In particular, we had about 2K,

0.2K, and 1.4K initial crowdsourced edges, respectively, for All-

Sports, Gymnastics, and Landmarks datasets. We set the batch size

as 320, 40, and 120 questions, respectively, over these datasets.

5.2.1 Crowdsourcing Cost Improvement. In Figure 7, we show

the number of next crowdsourcing questions required to reach a cer-

tain accuracy. We consider F1-measure of 0.75 and above, because

higher accuracy results are more important in real-world applica-

tions. We do not show TC-clustering, because it did not achieve

an accuracy over 0.75 in all our datasets. We find that the number

of crowdsourcing questions required to obtain a higher accuracy is

much less — often by a margin of 50% — for PERC, in compari-

son to bDENSE, PC-Pivot, and MinMax. For example, to achieve

F1-measure of 0.95 in the Gymnastics dataset, PERC, bDENSE, PC-

Pivot, and MinMax require 863, 1792, 3360, and 1866 next crowd-

sourcing questions, respectively. These results demonstrate the ef-

fectiveness of PERC in reducing crowdsourcing cost.
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quired to reach F1-measure=0.95, Gymnastics

5.2.2 Accuracy Improvement. In Figure 8, we illustrate accuracy

improvements of PERC over state-of-the-art approaches. We ob-

served that the F1-measure of PERC increases at a higher rate and

quickly reaches around 0.95 with less number of next crowdsourc-

ing questions, compared to other methods, in all our datasets. As

an example, with about 12K next crowdsourcing questions over All-

Sports, the F1-measure of PERC is 0.95, whereas for bDENSE,Min-

Max, PC-Pivot, and TC-clustering, the F1-measures are 0.75, 0.79,

0.58, and 0.67, respectively. These results demonstrate the accuracy

improvements of PERC next crowdsourcing algorithm.

5.2.3 E�iciency Improvement. We compare the average compu-

tation time required to select a batch of next crowdsourcing ques-

tions, which is computed as follows. We first measure the computa-

tion time to select all next crowdsourcing questions in order to reach

a certain accuracy, e.g., F1-measure of 0.9 for PERC, bDENSE, PC-

Pivot, andMinMax. One may recall that PERC next crowdsourcing

might trigger an update of the previous maximum-likelihood clus-

tering. We empirically found that these updates happen 20∼25%

of the times after next crowdsourcing, and the times consumed for

such re-clusterings are also added in the total time required for

PERC. Since TC-clustering does not achieve such a high accuracy,

we instead consider the time required to obtain the highest possible

accuracy via TC-clustering. Next, we divide this time by the total

number of batches issued to crowd workers, and report this value

as the average computation time to select one batch of next crowd-

sourcing questions for the respective methods.

Figure 9 shows that the average time for one batch selection is

at least an order of magnitude faster in case of PERC, compared to

that of bDENSE, PC-Pivot, and MinMax. We note that the Y-axis

is logarithmic in these figures. For example, with the Landmarks

dataset, the average time to select one batch (with 120 questions)

using PERC is only 0.5 sec, whereas it requires about 15 sec, 12

sec, and 51 sec, respectively, to select a batch of same size using

bDENSE, MinMax, and PC-Pivot. Thus, our empirical results illus-

trate that PERC is at least an order of magnitude faster compared

to bDENSE, MinMax, and PC-Pivot, in terms of selecting the next

crowdsourcing questions.

5.2.4 Results with Cora Dataset. We present next crowdsourc-

ing results over the larger Cora dataset in Figure 10. We started

with 2K initial crowdsourced edges, and we set the batch size as 300

questions. Figures 10(a) and 10(b) demonstrate the cost and accu-

racy improvements of PERC. For example, to achieve F1-measure

= 0.8, PERC requires about 7.2K questions, whereas bDENSE and

MinMax require around 14K and 22K questions, respectively. The

maximum F1-measure reached by PC-Pivot over Cora is 0.74. In

Figure 10(c), we compare the average computation times required

to select a batch of 300 next crowdsourcing questions over Cora

dataset. The Y-axis is logarithmic. As earlier, PERC is 5∼15 times

faster than both bDENSE and MinMax, e.g., PERC requires 1.5 sec

to select a batch of 300 questions, whereas bDENSE and MinMax

consume 7 sec and 20 sec, respectively, for the same.

5.2.5 Varying Batch Sizes. We analyze the impact of varying

batch sizes on crowdsourcing cost and accuracy (Figure 11). Smaller

batch sizes help in improving the accuracy and to reduce the crowd-

sourcing cost. This is because we do not know the corresponding

edge probabilities apriori; and hence, by issuing multiple questions

in batches, the overall quality would decrease. However, asking

questions in batches reduces the overall running time (i.e., next

batch selection time + crowdsourcing time), since many crowd work-

ers would be able to answer the questions in a batch in parallel.

In Figure 11, we show the number of next crowdsourcing ques-

tions required to reach F1-measure=0.95 for PERC and bDENSE.

We present our results over Gymnastics dataset. As expected, this

crowdsourcing cost decreases with smaller batch sizes, for both

these methods. We also observed that PERC outperforms bDENSE

in terms of crowdsourcing cost under all batch sizes.

6 RELATEDWORK

• Crowdsourcing in Data Management. Recently, crowdsourc-

ing has been adopted in video and image annotations, search rele-

vance, and natural language processing [1, 8]. Several systems have

been developed to incorporate human work into a database/mobile

system, e.g., CrowdDB, Deco, CrowdSearch, CDAS, CrowdForge,

TurKit, and Qurk [16, 18]. There are also studies on leveraging

crowd’s ability to improve data management tasks, e.g., selection,

sort, skyline, join, mining, classification, and max/top-k [3, 17].

• Crowdsourced Entity Resolution (ER). An important problem

in crowdsourced ER is to reduce the number of questions asked to

workers, e.g., a clustering-based method [21] where each question

is a group of records and asks workers to classify the records into

different clusters. Demartini et. al. [5] and Jeffrey et. al. [11] de-

signed crowdsourcing systems based on a probabilistic framework,

but does not employ transitivity to reduce the crowdsourcing cost.

Wang et. al. [22] and Vesdapunt et. al. [20] utilized transitivity to re-

duce the number of questions. Various models to select high-quality

questions were developed in [24, 25]. The most recent work [2]



used a partial order approach, which additionally requires each en-

tities having multiple attributes. More importantly, all these works

assume no crowd error, or employ majority voting.

Recently, MinMax, PC-Pivot, and DENSE [9, 19, 23] directly in-

corporated crowd errors in ER tasks. However, as we stated earlier,

these methods consider ad-hoc, local features to select next ques-

tions, such as individual paths, nodes, or the set of either positive

or negative edges. Hence, they generally fail to capture the strength

of the entire clustering, resulting in higher crowdsourcing cost in

order to achieve a reasonable ER accuracy.

• Dealing with Crowdsourcing Errors. Quality control is critical

in crowdsourcing [16]. Machine learning techniques have been em-

ployed to determine the quality of the crowd, e.g., [4, 13, 14]. Or-

thogonal to these works, our proposed solution incorporates crowd

errors while performing next crowdsourcing and ER tasks.

•EntityResolution Algorithms. Entity resolution (ER), also known

as entity reconciliation, deduplication, or record linkage, is well

studied in data cleaning and integration. Many ER algorithms have

been proposed based on different input settings, e.g., single-pass

clustering, star clustering, cut clustering, correlation clustering, and

Markov clustering [7, 15]. We used correlation clustering because

this is the most natural setting for clustering a set of records that are

connected by both positive and negative edges [6]. Besides, our con-

tribution— reliability-based next crowdsourcing question selection

is orthogonal to the specific ER method employed.

7 CONCLUSIONS

We studied crowdsourced entity resolution together with erroneous

crowd answers. Our solution PERC does not require any user-defined

threshold values, and no apriori information about the error rate of

crowd workers. We formulated the problem considering an uncer-

tain graph model and using possible world semantics with edge

independence. We employed the notion of reliability in uncertain

graphs to identify the most effective next crowdsourcing questions.

Based on detailed empirical results with four real-world datasets,

PERC improves the accuracy by 15%, reduces the crowdsourcing

cost by 50%, and also decreases the next question selection time by

an order of magnitude compared to state-of-the-art approaches.
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APPENDIX

Limitation of DENSE [19] with running example. The Dense con-

siders only either the set of positive edges (i.e., edges with majority

YES votes), or the set of negative edges (i.e., edges having major-

ity NO votes) between two disjoint record sets for calculating the

strength of evidences. A metric ρ-ratio is defined, which finds the

lack of strong evidences for clustering, and DENSE selects a pair

to crowdsource that has the maximum ρ-ratio. In particular, ρ-ratio

between sets A and B is calculated as follows.

P ′
Y 1

× P ′
Y 2

PY 1 × PY 2
×min{

P ′
N

PN
,

P ′
Y

PY
} (10)

Here, Y1 is the set of positive edges between A and R \ B, Y2 the

set of positive edges between B and R\B,N the set of negative edges

across A and B, and Y the set of positive edges across A and B. The

set of all records are denoted by R. Let the probability for an edge

a ∈ {Y1
⋃
Y2

⋃
Y
⋃

N } being correct be p(a), then we compute:

PY 1 =
∏

a∈Y 1

p(a); PY 2 =
∏

a∈Y 2

p(a); PY =
∏

a∈Y

p(a);

P ′Y 1 =
∏

a∈Y 1

(1 − p(a)); P ′Y 2 =
∏

a∈Y 2

(1 − p(a)); P ′Y =
∏

a∈Y

(1 − p(a));

PN =
∏

a∈N

p(a); P ′N =
∏

a∈N

(1 − p(a)) (11)

Since ρ-ratios between the clusters 〈C1,C2〉 and 〈C3,C4〉 have

the same value, which is due to the weaker negative edges, i.e.
P ′
N

PN
=

0.3
0.7 , DENSE assumes that asking a question across 〈C1,C2〉

or 〈C3,C4〉 is equivalent. However, in reality, asking a question be-

tween clusters C3 and C4 is more beneficial.


