Select Your Questions Wisely: For Entity Resolution
With Crowd Errors

Vijaya Krishna Yalavarthi Xiangyu Ke Arijit Khan
NTU Singapore NTU Singapore NTU Singapore
yalavarthi @ntu.edu.sg xiangyu001 @e.ntu.edu.sg arijit.khan @ntu.edu.sg
ABSTRACT analytics, knowledge base construction, comparison shopping, health

Crowdsourcing is becoming increasingly important in entity res-
olution tasks due to their inherent complexity such as clustering
of images and natural language processing. Humans can provide
more insightful information for these difficult problems compared
to machine-based automatic techniques. Nevertheless, human work-
ers can make mistakes due to lack of domain expertise or serious-
ness, ambiguity, or even due to malicious intents. The bulk of lit-
erature usually deals with human errors via majority voting or by
assigning a universal error rate over crowd workers. However, such
approaches are incomplete, and often inconsistent, because the ex-
pertise of crowd workers are diverse with possible biases, thereby
making it largely inappropriate to assume a universal error rate for
all workers over all crowdsourcing tasks.

We mitigate the above challenges by considering an uncertain
graph model, where the edge probability between two records A and
B denotes the ratio of crowd workers who voted YES on the ques-
tion if A and B are same entity. To reflect independence across dif-
ferent crowdsourcing tasks, we apply the notion of possible worlds,
and develop parameter-free algorithms for both next crowdsourcing
and entity resolution tasks. In particular, for next crowdsourcing,
we identify the record pair that maximally increases the reliabil-
ity of the current clustering. Since reliability takes into account the
connected-ness inside and across all clusters, this metric is more ef-
fective in deciding next questions, in comparison with state-of-the-
art works, which consider local features, such as individual edges,
paths, or nodes to select next crowdsourcing questions. Based on de-
tailed empirical analysis over real-world datasets, we find that our
proposed solution, PERC (probabilistic entity resolution with im-
perfect crowd) improves the quality by 15% and reduces the overall
cost by 50% for the crowdsourcing-based entity resolution.

1 INTRODUCTION

Entity Resolution (ER) is the task of disambiguating manifestations
of real-world entities in various records by linking and clustering
[7]. For example, there could be different ways of addressing the
same person in text, or several photos of a particular object. Also
known as Deduplication, this is a critical step in data cleaning and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CIKM’17 , November 6-10, 2017, Singapore, Singapore

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4918-5/17/11. .. $15.00
https://doi.org/10.1145/3132847.3132876

care, and law enforcement, among many others.

Although machine-based techniques exist for ER tasks, past stud-
ies have shown that crowdsourcing can produce higher quality re-
sults, especially for more complex jobs such as classification and
clustering of images, video tagging, optical character recognition,
and natural language processing [8]. Various crowdsourcing ser-
vices, e.g., Amazon’s Mechanical Turk (AMT) and CrowdFlower
[17], allow individuals and commercial organizations to set up tasks
that humans can perform for certain rewards. Since a crowd tasker
does not work for free, bulk of the literature in this domain aims at
minimizing the cost of crowdsourcing, while also maximizing the
overall ER result quality [2, 20, 22, 25]. However, human workers
can be error-prone due to lack of domain expertise, individual bi-
ases, task complexity and ambiguity, or simply because of tiredness,
and malicious behavior [9, 19]. As an example, even considering an-
swers from workers with high-accuracy statistics in AMT, we find
that the average crowd error rate can be up to 25% (we define aver-
age crowd error rate in Section 5). State-of-the-art works elude this
severe concern by majority voting [20, 22, 25], that is, to ask the
same question to multiple people and consider the majority answer;
or by assigning a universal error rate for crowd taskers [19]. Many
other works bypass this as an orthogonal problem to crowdsourced
ER, because there are various approaches to compute and reduce
crowdsourcing biases and errors, including [4, 14, 16].

Challenges. Considering the quality assurance as an orthogonal
problem to crowdsourced ER, however, is a substandard solution.
Instead, approaching both these problems together improves the
quality of ER, which is evident from recent works [9, 19, 23]. The
majority voting is often unreliable because spammers and low-paid
workers may collude to produce incorrect answers [16]. Besides,
the tasker crowd is large, anonymous, transient, and it is usually
difficult to establish a trust relationship with a specific worker [14].
Each batch of tasks is solved by a group of taskers who may be
completely new, and one may not see them again, thereby making
it unrealistic to assign a universal error rate for all workers over all
crowdsourcing tasks.

The major contribution of our work is to develop an end-to-end
pipeline for the crowdsourcing-based ER problem, taking into con-
sideration potential crowd errors. While crowdsourcing a few ques-
tions might be sufficient for an initial clustering of records (e.g., one
may crowdsource only n — 1 record pairs so to construct a spanning
tree with all n records), in order to improve the ER quality, specifi-
cally in the presence of crowd errors, crowdsourcing of more record
pairs is necessary. Perhaps, asking the crowd about all O(n?) record
pairs would provide a very good ER accuracy, but that is prohibi-
tively expensive. Hence, the critical question that we investigate in
this work is as follows. Given the current clustering, what is the best

datasets accuracy: # crowdsourced questions

% crowdsourcing cost

FI- MinMax ~ DENSE PC-Pivot PERC reduction by PERC over Gy~ CZ
measure 191 [19] [23] [this work] || MinMax DENSE PC-Pivot S A% 0.3 » |9
Allsports 0.9 13.6K 6.0K 217K 17K 1397% 26871% 46.08% - é
Gymnastics 0.9 1.3K 1.5K 1.8K 0.8K 3846% 46.67% 55.56% ;0.8) \
Landmarks 0.9 11.0K 8.0K 16K 59K 4636% 2625% 63.12% ! D
Cora 0.8 225K 14.0K X 72K 68.00% 48.57% X ;
\

Table 1: Crowdsourcing cost reduction by PERC: We present the num-
ber of crowdsourcing questions required to achieve a certain accuracy
for various methods. For details, see Section 5.

record pair to crowdsource next? Our objective is two-fold: The set
of next crowdsourcing questions should be selected in a way that
increases the ER accuracy as much as as possible, at the expenses
of as few next crowdsourcing questions as possible.

Given its practical importance, not surprisingly, the problem of
identifying the next question for crowdsourced ER, in the presence
of crowd errors, has been studied recently: MinMax[9], PC-Pivot
[23], and DENSE [19]. These methods consider ad-hoc, local fea-
tures to select next questions, such as individual paths (e.g., Min-
Max), nodes (e.g., PC-Pivot), or the set of either positive or negative
edges (e.g., DENSE, shown in Appendix). Hence, they generally fail
to capture the strength of the entire clustering, resulting in higher
crowdsourcing cost to achieve a reasonable ER accuracy.

Our Contribution. As opposed to local metrics used in prior works,
we select the next crowdsourcing question by considering the strength
of the entire clustering. Our global metric, denoted as the reliabil-
ity, follows the notion of connected-ness in an uncertain graph. In-
tuitively, reliability measures how well-connected a cluster is, and
also how well-separated two clusters are. We then systematically
identify the next crowdsourcing question, either from a weakly con-
nected cluster, or across a pair of clusters that are weakly sepa-
rated, thereby creating a balance between stronger and weaker com-
ponents in the clustering. As a consequence, our reliability-based
next crowdsourcing algorithm reduces the crowdsourcing cost sig-
nificantly, which is evident in Table 1.
Our contributions can be summarized as follows.

e For the next crowdsourcing problem, we introduce a novel
metric called “reliability” of a clustering, that measures con-
nected -ness within and across clusters by following the no-
tion of uncertain graphs (Section 3). This is more effective
than local-feature-based next crowdsourcing approaches [9,
19, 23], as demonstrated with our running example (Section 3)
and also verified in our experimental results (see Table 1).

o Using reliability-based next crowdsourcing, we develop an
end-to-end solution, PERC, for crowdsourced ER (Section 4).
Our algorithms are parameter-free in the sense that we do
not require any user-defined threshold values, and no apriori
information about the error rate of the crowd workers.

o We perform detailed experiments with four real-world datasets
using Amazon’s Mechanical Turk platform. The performance
analysis illustrates the quality, cost, and efficiency improve-
ments of our framework (Section 5).

Running Example. Consider a dataset of eight images shown in
Figure 1. Records A, B belong to famous American actress and
model, Eva Mendes; C, D to Bollywood star and lead actress of
the American television series, Quantico, Priyanka Chopra; and
E, F, G, H to Hollywood actor Tom Cruise. 80% of crowd work-
ers voted YES that both records in each of the following pairs are

0.7

|

Figure 1: Running example: Edge probability denotes ratio of crowd
workers voted YES for the respective records pair to be same entity.
same: (A, B), (C,D), (E, F), and (G, H). All crowd workers also
answered NO for the edges between the following cluster pairs:
(C1,C3), (Cy,C3), (C1,Cy4), and (Cz,Cy). In this example, four
clusters Cq,Cy, C3 and C4 are formed, as shown in Figure 1. Our
objective is to identify the next question to crowdsource that max-
imizes the gain. It can be observed that asking a question between
clusters C3 and Cy4 is more beneficial because all images in C3 and
C4 belong to the same entity, and one more edge with probability
greater than 0.5 helps in merging these two clusters.

2 PRELIMINARIES

2.1 Background

Entity Resolution (ER). An ER algorithm receives an input set
of records R = {r1,r2,...,rn} and a pairwise similarity function F,
and it returns a set of matching pair of records: C = {Rq, Rz, ...,Rm},
such that, R; N R; = ¢ for all i, j, and U;R; = R. We call each R; a
cluster of R, and each cluster represents a distinct real-world entity.
The partition of R into a set of clusters is called a clustering C of
R. If r; and ry are matching (non-matching), they are denoted by
r1=rz(r1 #r2).

An ER algorithm generally obeys the two following relations.
Transitivity. Given three records r1, r2, and r3, if r1 = rz and ry = r3,
then we have r; = rs3.

Anti-transitivity. Given three records rq, r2, and r3, if r; = rz and
ro # rs, then we have rq # rs.

Thus, a clustering C of the input set R of records is transitively
closed. One can derive the following theorem combinatorially. We
omit the proof due to limitation of space.

THEOREM 1. For n records, there can be (2" — n) different clus-
terings, where each cluster in some clustering must have between
(1, n) records.

Crowdsourced ER. We use a crowdsourcing platform such as Ama-
zon’s Mechanical Turk (AMT), which provides APIs for conve-
niently using a large number of human workers to complete micro-
tasks (also known as Human Intelligent Tasks (HITs)). To identify
whether two records belong to the same entity, we create an HIT
for the pair, and publish it to AMT with possible binary answers: A
worker needs to submit “YES’ if she thinks that the record pair is
matching, and ‘NO’ otherwise.

Uncertain
Graph

Gy 010

G7: 0.432
Figure 2: Possible worlds of an uncertain graph: Three possible worlds

Gs, Gg, Gy are not clusterings, as they are not transitively closed. For
example, in Gs, A = C and C = B, but A # B, thus violating transitivity.

For mitigating crowd errors, we allow multiple workers to per-
form the same HIT. We then assign an edge with probability p(r;, r;)
between two records r; and rj, where p(r;, r;) is the ratio of crowd
workers who voted YES on the question if r; and r; are same entity.

Uncertain Graph. Every HIT creates an uncertain, undirected edge
between the respective record pair, thereby generating an uncertain,
undirected graph G = (R, E, p), as depicted previously in Figure 1.
Eachrecord r; € R denotes a node in the graph, E € RXR represents
the set of edges between the record pairs that were crowdsourced,
and p(e) € (0,1) is the probability of the edge e € E as derived
earlier. In our context, it is important to note that p(e) = 0 (i.e., all
crowd workers voted non-matching) is not equivalent to the edge e
being absent in G (i.e., the pair is not crowdsourced yet).

To reflect independence across different crowdsourcing tasks (i.e.,
each HIT can be performed by a different set of workers), we em-
ploy the well-established notion of possible world, together with the
assumption that each edge can be matching or non-matching, inde-
pendent of other edges [12]. Hence, the uncertain graph G yields
2|El deterministic graphs (or, possible worlds) G E G, where each
G is a pair (R, Eg), with Eg C E are matching edges, and its proba-
bility of being observed is given in Equation 1.

PG =[] rer [] a-pe))

e EEG e€E \EG
Next, we have the following observation.

LEMMA 1. Every clustering of the input record set R corresponds
to some possible world of the uncertain graph G = (R, E, p). How-
ever, every possible world of G might not be a clustering of R.

The first part of the lemma is trivial (i.e., follows from the defini-
tion of a possible world), whereas the second part holds since every
possible world is not transitively closed. We demonstrate this fact
with an example in Figure 2, where three possible worlds Gs, Gg,
and G7 of the given uncertain graph are not clusterings.

Since every clustering corresponds to some possible world, we
define the likelihood of a clustering as the probability of the respec-
tive possible world being observed. In Figure 2, the likelihood of
the clustering {(A, B), (C)} is same as P(G4), which is 0.288.

2.2 Entity Resolution Problem

Given R, G, let us consider a clustering C = {R1,Ra,...,R;u} of R.
We define the likelihood of C as the probability that (1) all edges
inside every cluster R; exist, and (2) all edges across every pair of
clusters Rj, Ry do not exist. Since an edge can exist independent of
others, we compute the likelihood L(C) as follows.

=[] [] eex [] [T @a-pey

R; €C |e€EN(R; XR;) Rj, R €C |e€EN(R;XRy)
Jj<k

(@)
We formally introduce the ER problem below.

PROBLEM 1 (ENTITY RESOLUTION). Given the set R of records
and an uncertain graph G = (R, E, p), find the (transitively closed)
clustering C of R having the highest likelihood L(C).

The problem of finding the most-likely clustering (also referred
to as the maximum-likelihood clustering), however, is NP-hard, which
can be verified by a polynomial-time reduction from the NP-hard
correlation clustering problem [19].

THEOREM 2. Given an uncertain graph G = (R, E, p) over records
set R, finding the maximum-likelihood clustering of R is NP-hard.

Correlation clustering is the most natural setting for clustering
a set of records that are connected by both positive and negative
edges [10]. Many approximate and heuristic algorithms were pro-
posed for correlation clustering [6, 19]. Indeed, all prior works such
as [9, 19, 23] in the domain of crowdsourced ER, that incorporated
human error, also employed correlation clustering. Therefore, in our
PERC framework, we apply correlation clustering for the ER prob-
lem. Details about our clustering algorithm will be given in Sec-
tion 4. We shall first introduce our next crowdsourcing algorithm in
the following, which is the key contribution of this work.

3 NEXT CROWDSOURCING

We discuss our algorithm for selecting the next crowdsourcing ques-
tion. We assume that an initial (maximum-likelihood) clustering
C is already constructed from the records set R and the uncertain
graph G = (R,E,p), and now we want to identify the best entity
pair (r;, rj) ¢ E to crowdsource next.

3.1 Reliability of a Clustering

Intuitively, our objective is to identify a pair (r;,r;) ¢ E that can
improve the quality of the given clustering as much as possible.
To this end, we identify the two following “connected-ness”-based
criteria that determine the quality of a clustering C. Let us denote
C = {R1,Ry, ..., Riy}, where each R; is a cluster and represents a
distinct real-world entity.

e How well each cluster R; is connected?
e How well every pair of clusters Rj, R, (j < k) is discon-
nected?

Given a clustering C = {Ry, R, ..., Ry } and the uncertain graph
G = (R, E, p), all edges inside a cluster are called YES edges, whereas
the edges across two clusters are referred to as NO edges. If e € E
is an YES edge, we define its existence probability py(e) = p(e).
On the other hand, if e € E is a NO edge, we compute its ex-
istence probability as py(e) = 1 — p(e). We derive an YES-NO

Uncertain Graph Yes-No Graph

Figure 3: Reliability of a clustering

graph Gy|ny = (R, E,py|n. L) from the uncertain graph G as fol-
lows. Gy |n has the same set of nodes and edges as G, but each edge
e in Gy |y has a binary label L(e), which can be either YES or No,
as defined above. For a YES edge e, its probability py|n(e) = py(e).
For a NO edge e, its probability py|n(e) = pn(e). Next, we formal-
ize the notion of connectivity and disconnectivity.

DEFINITION 1 (CONNECTIVITY). Given a cluster R; and the
YES-NO graph Gy N, the connectivity of R is defined as the sum of
the probability of those possible worlds of Gy|n where all records
in R; are connected by YES edges. Formally,

Connect(R;) = Z [I(R;, G) x P(G)] A3)
GCGy|N

In the above equation, I(R;,G) is an indicator function over a
possible deterministic graph G E Gy |y taking value 1 if records in
R; are all connected (by YES edges) in G, and 0 otherwise.

DEFINITION 2 (DISCONNECTIVITY). Given a pair of clusters
Rj, R (j < k) and the YES-NO graph Gy |n, the disconnectivity
between Rj, Ry is defined as the sum of the probability of those pos-
sible worlds of Gy | where at least one NO edge exists between R;
and Ry.. Formally,

Disconnect(Rj, Ry) 4
o sIF(RiXR)NE=¢
1= i rpe®;xri)nE(L = PN (ris T1)) ; otherwise

Based on the above definition, we observe that for all i, j, k; j < k,
the following events are independent. (1) A cluster R; is connected,
and (2) a pair of clusters Rj, Ry are disconnected. Therefore, one
can multiply the probability of these events to measure the over-
all quality of a clustering C. For practical reasons, we avoid multi-
plying fractions, and instead compute summation over logarithms
(Equation 5). Thus, if either of Connect(R;) or Disconnect(Rj, Ry)
is zero, we substitute it by a very small positive fraction. Formally,
we denote this metric as the reliability of a clustering.

DEFINITION 3 (RELIABILITY). Given a clustering C = {R1, R,
..., Rm} and the YES-NO graph Gy |y, the reliability of C is de-
fined as the probability that every cluster R; is connected and every
pair of clusters Rj, Ry (j < k) is disconnected, i.e.,

Rel(C) = Z log (Connect (R;)) + Z log (Disconnect (R;, R))
i j<k
©)

EXAMPLE 1. In Figure 3, we compute the reliability of the clus-
tering C = {(A, B, C),(D)}. We first construct the YES-NO graph on
the right. Then, we have: Connect(A,B,C) = 0.72, Connect(D) =
1.0, and Disconnect ((A,B,C),(D)) = 1—-(1-0.8)(1 —0.4) = 0.88.
Hence, Rel(C) =1og0.72 + log 1 + log 0.88 ~ —0.20.

Figure 4: Reliability-based next crowdsourcing: running example
3.2 Next Crowdsourcing Problem

We derive, for every record pair (r;,r;) ¢ E, the improvement in re-
liability of the already computed clustering C, if one crowdsources
the pair, and thereby assigns the edge probability p(r;, r;). However,
one does not know p(r;, r;) apriori. Therefore, we consider an op-
timistic scenario, that is, for all possible values of p(r;, ;) € (0,1),
we derive what will be the maximum possible increment in Rel(C)
by crowdsourcing (r;, r;). We select the record pair that maximally
increases Rel(C), under such optimistic assumption.

Our formulation has several desirable features, such as mono-
tonicity and improving weaker components, as stated next.

LEMMA 2. For any new edge e that we crowdsourced, Rel(C)
will increase maximally when py|n(e) = 1.

In other words, if the new edge e is inside a cluster (i.e., YES
edge), then its probability requires to be p(e) = 1, which means
that all workers agreed on the record pair as matching. On the other
hand, if the new edge e is across two clusters (i.e., NO edge), then
its probability must be p(e) = 0, which implies that all workers
agreed on the record pair as non-matching. To put it simply, if the
next crowdsourcing result is fully consistent with our previous clus-
tering, then the quality of the clustering improves maximally.

LEMMA 3. By adding a new edge e, the reliability of C remains
the same when py|n(e) = 0. It increases monotonically as we have

larger values of py|n(e).

Generally speaking, the more is the ratio of workers who agree
with the previous clustering, the higher is the improvement in the
clustering quality.

LEMMA 4. For any new edge e that we included, if py|n(e) >
0.5, the maximum-likelihood clustering, as defined in Problem 1,
remains the same for the updated graph.

This implies that if the majority of the crowd workers agree with
our previous clustering, there is no need to change the clustering.
Below, we formally introduce the next crowdsourcing problem.

PROBLEM 2 (NEXT CROWDSOURCING). Given the set R of
records, an uncertain graph G = (R, E, p), and a clustering C, find
the record pair (ri,rj) & E, such that adding an edge (r;,rj), with
py|Nn(ri,rj) = 1, maximally increases the reliability of C.

3.3 Demonstration with Running Example

We now demonstrate how our reliability-based next crowdsourcing
technique deals with the running example in Figure 1.

EXAMPLE 2. Figure 4 is the abstract version of our running ex-
ample in Figure 1. The clustering algorithm identifies four clusters:
Cy = {A,B}, Cy = {C,D}, C3 = {E,F}, and C4 = {G,H}. Each
cluster has connectivity 0.8. The disconnectivity values across these

clusters are as follows. Disconnect(Cy,Cy) = 0.82, Disconnect(Ca,
Cs3) = 1, Disconnect(Cy,C3) = 1, and Disconnect(C3,Cyq) = 0.79.
As Disconnect(Cs, Cy) is the least among all others, our algorithm
priorities crowdsourcing an edge across C3, Cy4. Intuitively, the sep-
aration between Cs, Cy is the weakest, thus we require to ask more
questions about this separation. The reliability gain by adding a
new edge e between Cs,Cy, having probability py|n(e) = 1, is
log 1 -10g0.79=0.10; whereas, the reliability gain by adding a new
edge e between Cy,Cy, with probability py|n(e) = 1, is log1 —
log 0.82=0.08. Hence, for next crowdsourcing, our algorithm se-
lects an edge across C3, Cy. Indeed, one more edge with probability
greater than 0.5 across Cs, Cyq helps in merging these two clusters,
while an edge with probability less than 0.5 will make their sep-
aration stronger. This is consistent with our running example that
asking a question across clusters C3 and Cy4 is more beneficial.

Remarks. As demonstrated with the running example, our next
crowdsourcing method usually prioritizes the weaker components
and improves their quality, thereby creating a balance between the
quality of stronger and weaker components in the clustering. This is
evident if we consider two pairs of clusters such that Disconnect(Rj,
Ry) < Disconnect(Rs, Rq), then our method will always prioritize a
pair (r1,r2) € Rq X Ry over any other pair (r3,r4) € R3 X Ry, for the
next crowdsourcing. For brevity, let us denote by d; = Disconnect(R1,
Ry) and dy = Disconnect(Rs, Ry). In the first case, we consider an
edge (r1,r2) with pN(r1,72) = 1, ie., p(r1,r2) = 0. Hence, the
increase in reliability, following Equation 5, is log(1/d;). Analo-
gously, in the second case, the increase in reliability is log(1/dz).
Since d; < dy, the pair (r1, rp) is preferred over (r3, rs).

In case of connectivity of individual clusters, in general no such
relationship exists. However, if the connectivity of one cluster is
significantly smaller than that of the other, e.g., Connect(R;) <<
Connect(Ry), it is very likely that our method will select a pair from
R; for the next crowdsourcing problem. Let ¢; = Connect(R;) and
¢z = Connect(Rz). Also, assume that §; is the maximum increase
in ¢; if we add an edge e of probability py(e) = 1 (i.e., p(e) = 1)
in R;. Similarly, let 2 be the maximum increase in ¢ if we add an
edge e’ of probability py(e’) = 1 (i.e., p(e’) = 1) in Ry. Hence, in
the first case, the increase in reliability is log(1 + 81 /c1), whereas in
the second case, the increase in reliability is log(1 + d2/c2). Since
c1 << cp, it is very likely that &;/c; > 82/cp. Therefore, in such
cases, our method will prioritize a specific record pair from R; over
all pairs from Ry, for the next crowdsourcing problem.

3.4 Next Crowdsourcing Algorithm

Difficulties. A naive algorithm to find the best record pair for next
crowdsourcing would be inefficient due to the following challenges.

o Computing the connectivity of a cluster, also known as the
all-terminal-reliability problem in device networks, is #P-hard
[12]. Hence, finding the exact connectivity value, even for a
modest size cluster, is almost infeasible.

o At each round of crowdsourcing, we identify the best record
pair not in E. Usually, the uncertain graph G is sparse, that
is, |[E| << O(|R|?). Therefore, at every round, one needs to
compare O(|R|?) pairs in order to identify the best one for
next crowdsourcing.

Monte Carlo Sampling. Due to its intrinsic hardness, we tackle
the connectivity estimation problem from an approximation view-
point. We use the answer computed by Monte Carlo (MC) sam-
pling as a proxy. This is a reasonable choice as MC-sampling is
an unbiased estimator, thus by running it for a sufficiently large
number of times, its answer is expected to converge to the real an-
swer with a high probability. In particular, we first sample ¢ pos-
sible graphs, G1,Gg,...,G; of a subgraph of Gy |y induced by
the nodes in some cluster R;, according to (YES) edge probabil-
ity py|N = py- We then compute the ratio of possible graphs which
are connected, out of ¢ possible graphs that were generated. This
gives the MC-estimation of connectivity for cluster R;. To speed
up the sampling process, we combine MC-sampling with a breadth
first search (BFS) from one of the nodes in R; [12]. If the maximum
numbers of nodes and edges in a cluster are n,,4x and e qx, respec-
tively, then the time complexity of MC-based connectivity estima-
tion is given by O (t (Nmax + €max))- Based on empirical results
over our datasets, we observed that the MC-estimator converges
with a number of samples ¢ ~ 1000. This is roughly the same num-
ber observed in [12] for MC-sampling based reliability estimation
over other real-world uncertain graphs.

Algorithm. The complete method for next crowdsourcing is given
in Algorithm 1. Let us denote by priority of a pair (rj,rj) ¢ E as
the increase in reliability of the existing clustering, when the edge
(ri,rj) is included with probability Py| N(ri,rj) =1 (lines 7 and 14,
Algorithm 1). At every round, we crowdsource the record pair with
the highest priority. However, priority computation for all pairs at
every round would be expensive. We discuss below how one can
minimize the required number of priority computations.

We note that for a specific round, the priority of all the following
record pairs (ry,r;) € (R; X Rj) \ E, for a certain R; and Rj, are the
same. Therefore, we compute the priority of only one record pair
across every pair of clusters (lines 11-16, Algorithm 1). Finally, if
an edge was inserted in some cluster R; in the last round and there
is no change in the previous clustering (lines 18-24, Algorithm 1),
then the priority of the pairs inside other clusters, as well as those
across two clusters, will not change. Similarly, if an edge was in-
serted between two clusters R;, R; in the last round and there is no
change in the earlier clustering (lines 25-30, Algorithm 1), the pri-
ority of the pairs inside all clusters, as well as those across other
cluster pairs, will not change. All of these reduce the priority re-
computation necessary for at most O(n?,,,.) pairs at every round, if
there is no change in the previous clustering.

In reality, nmax is small, around 30~350 records, for the real-
world datasets that we have considered (and also used by state-of-
the-art approaches [9, 19, 23]). Thus, overall time complexity of our
next crowdsourcing algorithm is O (n%,,y (t (Mmax + €max))). In
fact, the priority of each record pair inside a cluster can be computed
in parallel, and/or one may sample a selected number of record
pairs, uniformly at random, from the cluster; thereby further reduc-
ing the time required to select the next crowdsourcing question.

Asking Next Questions in Batches. Algorithm 1 selects a single
question to ask next to the crowd workers. Instead, one may con-
sider a batch version to issue multiple high-quality questions. For a
batch size k (k is a tunable input parameter), we select the k record

Algorithm 1 Next Crowdsourcing Algorithm

Require: Records set R, uncertain graph G = (R, E, p), clustering C
Ensure: Record pair (r;, r;) ¢ E to be crowdsourced next
1: LetC={Ry, Ry, ..., R}

2: if Clustering updated last round then
3 priority queue Q = ¢
4 for all R; do
5 for all (rj, r.) € (R; XxR;)\ E do
6: Form G’ by adding (r}, rr) in G, with py (r;, ri) = 1
7 prio(rj, ri) = Relg (C) — Relg (C)
8 Insert ((rj, rg), prio(r;, ry)) into Q
9 end for
10: end for
11: forall (R; X Rg),j < k do
12: Find one (r;, r;) € (Rj X Rg) \ E
13: Form G’ by adding (r;, r;) in G, with pn(ri, 1) = 1
14: prio(ri, r;) = Relg (C) — Relg(C)
15: Insert ((r;, r7), prio(ri, rp)) into Q
16: end for
/* Clustering not Updated in last round */
17: else
18: if last edge was inserted in R; then
19: for all (rj, r.) € (R; XxR;)\ E do
20: Form G’ by adding (r}, r) in G, with py (r;, ri) = 1
21: prio(rj, ri) = Relg (C) — Relg (C)
22: Update ({rj, r), prio(rj, ry)) into Q
23: end for
24: endif
25: if last edge was inserted between R; and Ry, j < k then
26: Find one (r;, r;) € (Rj X Rg)\ E
27: Form G’ by adding (r;, r;) in G, with pn(ri, 1) =1
28: prio(ri, r;) = Relg (C) — Relg(C)
29: Insert ({r;, r;), prio(r;, ry)) into Q
30: endif
31: end if

32: (ri, 1) = Q.pop()
3: return (r;, 1)

(%)

pairs having the highest priority. It is expected that by issuing mul-
tiple questions in batches, the overall quality would decrease, be-
cause one does not know the corresponding edge probabilities apri-
ori; and therefore, we compute the priority of a record pair in an
optimistic manner. However, asking questions in batches helps in re-
ducing the running time of crowdsourced ER, because many crowd
workers would be able to answer the questions in a batch in parallel.

4 THE PERC FRAMEWORK

The reliability-based next crowdsourcing method (Section 3) forms
the crux of our PERC framework. Clearly, given a set of records
and their similarity values obtained via next crowdsourcing, one re-
quires to cluster these records. We discuss our clustering technique
in Section 4.1, and then provide in Section 4.2 the complete pipeline
that combines our next crowdsourcing and clustering algorithms.

4.1 Clustering Algorithm

Given the records set R and an uncertain graph G = (R, E, p), we use
correlation clustering to find the maximum-likelihood clustering of
R (Problem 1). We recall that all prior works in crowdsourced ER,
e.g., [9, 19, 23], which incorporated human error, also employed

InputR, 6 =(R,E, p)
Find C* = MLC(R, 6)

Find <r;, r> not in E, that
maximizes reliability of C*

Update C* = MLC(R, 6)

Figure 5: Overview of our PERC framework

correlation clustering. Since correlation clustering is NP-hard, sev-
eral approximate and heuristic algorithms exist [6]. We empirically
compare them, and find the Spectral-Connected-Components (SCC)
technique to be the most effective one. This is also the same cluster-
ing method used in DENSE entity resolution [19].

Spectral-Connected-Components (SCC). This algorithm starts from
the record pair having the highest probability of being the same
entity, given the answers for these two records. If this probability
is higher than 0.5, SCC merges the two records into one cluster.
In each successive step, the algorithm finds the clusters with the
highest probability of being the same entity, given the answers be-
tween them. If this probability is higher than 0.5, the two clusters
are merged into one cluster. Otherwise, SCC stops merging clusters,
and returns as output the current set of clusters.

Given two clusters R; and Rj, SCC computes the probability
Pr(R;, R;j) of merging them as given in Equation 6.

Pr(Ri.R))
[p(ri,mn)

(rk,r1)€(Ri XR;)NE

p(re,rp) + 1_[

(r,r1)€(Ri XRj)NE

A =-p(rg,r1)

(6)

Let the numbers of nodes in the uncertain graph G be n. Then,
the time complexity of SCC clustering is O(n?).

EXAMPLE 3. We demonstrate SCC clustering with our running
example in Figure 4. The algorithm identifies record pairs contain-
ing the maximum edge weight (i.e., 0.8). We initially clusters any of
A,B; C,D; E,F; or G, H. Later, we continue to cluster another three
record pairs as they have the same maximum edge weight. Once the
four clusters C; = {A,B},Cy = {C,D}, C3 = {E,F}, and C4 =
{G, H} are identified, we verify the edge weights across these clus-
ter. SCC merges two clusters only if the benefit of merging (Equa-
tion 6) is more than 0.5. Let us consider the merging of clusters
C1 and Cy. Their probability of merging is O.3><O.6+(z.13—>§)(?56)><(1—0.6)
= 0.39. In fact, none of the cluster pairs qualify for merging, and
SCC reports C1,Cy, Cs, and Cy4 as the four clusters.

(rk,r1)€(Ri XR;)NE

4.2 Putting Everything Together

we provide the entire pipeline of our PERC framework in Figure 5.
Given an input set R of records, and the initial uncertain graph G
(which might have no edges in the beginning, or only a few edges
based on initial crowdsourcing), we find the most-likely clustering
(MLC) C of R, with SCC algorithm. Next, we iteratively find the
best record pair (r;,r;j) and crowdsource it, until our budget is ex-
hausted, or we already find a complete (uncertain) graph over R.
After every crowdsourcing task, we add an uncertain edge between
the respective record pair, thereby updating G.

N -.. Crowdsource
1 N <A, C>

Initial Graph

Final Graph
Figure 6: Most-likely clustering (MLC) changes due to addition of
edges. Above: crowdsourcing result of (A, C) changes MLC from
{(A, B, 0)} to {(A, B), (C)}. Below: crowdsourcing result of (A, B)
changes MLC from {(A), (B, C)} to {(A, B), (C)}.

An interesting feature of our framework is that at the end of every
round, we check if the previous MLC C still remains the MLC for
the updated graph. This can be quickly verified based on Lemma 4,
that is, if the majority of the crowd workers agree with our previous
clustering, there is no need to change the clustering. Otherwise, we
recompute the new MLC and proceed to identify the best record pair
to crowdsource for this new MLC. Such re-clustering enables us to
rectify mistakes that might have been incurred at earlier rounds
due to incomplete information and crowd errors, thereby quickly
converging to a high-quality solution. We illustrate this feature of
our framework with two examples in Figure 6. As one may observe,
in both cases with the additional crowdsourcing evidences, the new
MLC is more promising than the earlier one.

While such updates in the MLC clustering are quite effective, we
empirically found that these updates happen only 20~25% of the
times after next crowdsourcing. This illustrates that while updating
the previous clustering is critical to improve the ER quality, it does
not significantly impact the total computation time.

Dataset #Records #Entities # Record-Pairs ~ Crowd Error Rate
Crowdsourced

All Sports 267 86 35511 5.67% (10 ques. / pair)

Gymnastics 94 12 4371 10.65 % (5 ques. / pair)

Landmarks 529 15 30070 4.82 % (5 ques. / pair)

Cora 949 165 29281 27.77 % (5 ques. / pair)

Table 2: Properties of datasets
5 EXPERIMENTAL RESULTS

We present empirical results with four real-world, benchmark datasets
(three image datasets and one text dataset). We evaluate entity res-
olution (ER) accuracy, efficiency, and crowdsourcing cost of PERC
under various initial conditions, and by asking the next crowdsourc-
ing questions one at a time and also in batches, with different crowd
errors. We compare PERC with four state-of-the-art crowdsourced
ER approaches: transitive closure (TC) clustering [20, 22, 25], Min-
Max [9], PC-Pivot [23], DENSE and bDENSE [19].

5.1 Environment Setup

The code is implemented in Python and we perform experiments on
a single core of a 32GB, 2.40GHz Xeon server. All results are aver-
aged over 10 runs. We present our results with spectral-connected-
components (SCC) based correlation clustering, as it performs the
best compared other correlation clustering methods [6, 19].

e Datasets. We use four benchmark, real-world datasets (Table 2)
from the literature of crowdsourced ER.

AllSports: The AllSports dataset [19] consists of athlete images
from different sports, with each image showing a single athlete.
Gymnastics: The Gymnastics dataset [19] contains athlete images,
but only from gymnastics, and it is more difficult to distinguish the
face of an athlete in this dataset, e.g., the athlete may be upside
down on uneven bars.

Landmarks: The Landmarks dataset [9] has images from 9 cities.
We consider a subset of the original dataset, consisting 529 images
of 15 different Landmarks.

Cora: This is a text dataset containing references of scientific pub-
lications [23]. Cora is one of the largest datasets considered in the
literature of crowdsourced ER, thus we use this dataset for demon-
strating scalability.

We use Amazon’s Mechanical Turk for crowdsourcing, and fol-
low the same setting that was employed by Verroios and Molina
in [19], e.g., considering answers from workers with high-accuracy
statistics. We omit the details due to lack of space. In particular, for
AllSports, we engage 10 workers for each task, whereas 5 workers
are employed for each task in the other datasets [9, 19, 23]. For All-
Sports and Gymnastics, due to their smaller sizes, we crowdsource
all record pairs. On the contrary, for Landmarks and Cora datasets,
we crowdsource about 22% and 7%, respectively, of all record pairs,
based on next crowdsourcing questions.

All these datasets come with the ground truth clustering results,
which we refer to as the gold standard clustering. If a worker an-
swered the record pair wrongly, then it is considered an error (Ta-
ble 2). As an example, out of 10 workers, if 8 workers answered
correct and 2 answered wrong, then the error in answering that par-
ticular records pair is 20%. Crowd error is measured as the average
of all such errors over all crowdsourced record pairs.

o Evaluation Metrics.

Accuracy: After a certain number of answers are collected by the
next crowdsourcing method, we apply ER algorithm for clustering.
To measure accuracy, we compare the output to the gold standard
clustering. Specifically, we employ precision (p) and recall (r), de-

fined as follows.
_ #record-pairs correctly reported as matching

N

#record-pairs reported as matching
__ #record-pairs correctly reported as matching

r= ®)

#matching record-pairs in gold clustering

Finally, we compute F1-measure, which is defined below.
Fl-measure = 2pr/(p +r) ©)
Following previous works [9, 19], we use Fl-measure to demon-
strate the accuracy of PERC and other competitors.
Crowdsourcing Cost: The crowdsourcing cost denotes the total
number of distinct record pairs being crowdsourced.
Efficiency: We report the average computation time required to se-
lect the next batch of crowdsourcing questions. Clearly, this is the
runtime of the algorithm to select the next batch of questions, and

3.510°

0.0*10° 0.0*10°

0.75 0.80 0.85 0.90 0.95
F1-measure

(a) AllSports
Figure 7: Cost improvement: # next crowdsourcing questions required to reach a certain accuracy (F1-measure)

» » ®
5 5 5

@ PERC == @ PERC == @ 4 PERC ==
S ... 4| DDENSE mumm S 3.0110° | bDENSE s $ 2310, | HDENSE mmwem
o 2510 MinMax o 25410% MinMax o 2010 MinMax

o *10% PC-Pivot « o 7 PC-Pivot « o wq04 PC-Pivot «

£ 2Ao1o4 £ 2010° £ 1810

g 1500 £ 1510° g 120!

g 100 g 1.010° 5 8010°

8 5010° S 504102 5 4.0"10°

x x x

[} [} [}

2 2 2

=+ =+ =+

0.75 0.80 0.85 0.90 0.95
F1-measure
(b) Gymnastics

0.0*10°

0.75 0.80 0.85 0.90 0.95
F1-measure
(¢) Landmarks

PERC === TC PERC ===
bDENSE mmssm PC-Pivot & bDENSE s
14 1 | MinMax o 1 | MinMax
5 5
§ 0.8 § 0.8
E 06 E 06
L 04 T 04
0.2 0.2 I
Il 1

o

2K 9K 12K 16K 23K
next crowdsource questions

(a) AllSports
Figure 8: Accuracy improvement (F1-measure) for next crowdsourcing

1

7
° 0.5

0.1
0.05
0.02
0.01

a batch of questions

0.002

avg. time (sec) to select
a batch of questions
o
o
avg. time (sec) to select

0.

PN .2 R
Q,Oo%% RN
G2 Yo

(a) AllSports

02K 0.6K 1.0K 1.5K
next crowdsource questions
(b) Gymnastics

R Yy 20 R
&0, 0 0
e %3’7

(b) Gymnastics

TC m—
PC-Pivot =™=—=3 ~ |bDENSE =mmssm PC-Pivot ===
<4 1t MinMax
E
5 2 08
2 o6
T 04
02 i i
1.4K 2.8K 4.2K 5.6K 7.0K 8.4K
next crowdsource questions
(¢) Landmarks
5 60
H g 15
sg °
85
25 0.1
=8 oo
27 0.002
R Yy 20 R
"% S0, O,
N3 Yo R Yo

(¢) Landmarks

Figure 9: Efficiency improvement: Computation time required to select a batch of next crowdsourcing questions

it excludes the crowdsourcing time (which would be similar across
different algorithms, for a given batch size).
o Compared Algorithms.
Transitive Closure (TC): This method selects, uniformly at ran-
dom, one of those record pairs for which the matching/ non-matching
relationship cannot be inferred (via transitivity and anti-transitivity)
from the existing edges. Following [20, 25], we consider major-
ity voting while deciding on the next crowdsourcing results. TC-
clustering never reaches F1-measure > 0.75 over our datasets, which
is because this method does not consider conflicting evidences.
DENSE and bDENSE: DENSE [19] considers only either the set
of positive edges, or the set of negative edges between two disjoint
record sets for calculating the strength of evidences, denoted as the
p-ratio (for details, see Introduction). bDENSE is a batch version
of DENSE, that selects multiple questions (having higher p-ratios)
to ask next, thereby allowing many crowd taskers to answer those
questions in parallel. For ER, these methods apply SCC-clustering.
The authors in [19] considered majority voting to decide on the
next crowdsourcing results. Moreover, they also assigned a fixed
human accuracy of 0.9 (i.e., error rate = 0.1) on those answers.
MinMax: For ER, [9] finds all positive and negative paths between
a record pair. The weight of a path is determined by the smallest
edge weight on that path. Finally, the algorithm selects the maximum-
weight path to decide whether the records are matching or not. For
next crowdsourcing, the authors proposed a hybrid strategy that
prefers either a more certain matching pair, or a less certain non-
matching pair. As (1) MinMax only considers the maximum-weight
path (and ignores all other paths) between a record pair for both ER
and next crowdsourcing, and (2) it does not consider the length of
a path (intuitively, the error accumulated across a short-length path

would be less than that through a longer path), the method can easily
produce less effective results.

PC-Pivot: For ER, [23] uses pivot-based correlation clustering. The
clustering refinement phase consists of either splitting, where nodes
are removed from clusters; or merging, where two clusters are com-
bined. The problem is that every node is considered individually,
and edges connecting to that node are used to calculate the respec-
tive benefit. Hence, the method may fail to capture the strength of
the entire clustering, resulting in higher crowdsourcing cost in order
to achieve a reasonable ER accuracy.

5.2 Next Crowdsourcing Results

We started with different numbers of initial edges and batch sizes
based on the size of our datasets. In particular, we had about 2K,
0.2K, and 1.4K initial crowdsourced edges, respectively, for All-
Sports, Gymnastics, and Landmarks datasets. We set the batch size
as 320, 40, and 120 questions, respectively, over these datasets.

5.2.1 Crowdsourcing Cost Improvement. In Figure 7, we show
the number of next crowdsourcing questions required to reach a cer-
tain accuracy. We consider F1-measure of 0.75 and above, because
higher accuracy results are more important in real-world applica-
tions. We do not show TC-clustering, because it did not achieve
an accuracy over 0.75 in all our datasets. We find that the number
of crowdsourcing questions required to obtain a higher accuracy is
much less — often by a margin of 50% — for PERC, in compari-
son to bDENSE, PC-Pivot, and MinMax. For example, to achieve
F1-measure of 0.95 in the Gymnastics dataset, PERC, bDENSE, PC-
Pivot, and MinMax require 863, 1792, 3360, and 1866 next crowd-
sourcing questions, respectively. These results demonstrate the ef-
fectiveness of PERC in reducing crowdsourcing cost.

F1-measure

(a) Cost

PERC mmm
1.8*10° [bDENSE mmmm

1.3410°

9.0102
5.0'102 H H
0.0*10°
1 40 80 120 160
batch-size (# of questions in a batch)

Figure 11: Varying batch-sizes: # next crowdsourcing questions re-
quired to reach F1-measure=0.95, Gymnastics

next crowdsource questions

5.2.2 Accuracy Improvement. In Figure 8, we illustrate accuracy
improvements of PERC over state-of-the-art approaches. We ob-
served that the F1-measure of PERC increases at a higher rate and
quickly reaches around 0.95 with less number of next crowdsourc-
ing questions, compared to other methods, in all our datasets. As
an example, with about 12K next crowdsourcing questions over All-
Sports, the F1-measure of PERC is 0.95, whereas for bDENSE, Min-
Max, PC-Pivot, and TC-clustering, the F1-measures are 0.75, 0.79,
0.58, and 0.67, respectively. These results demonstrate the accuracy
improvements of PERC next crowdsourcing algorithm.

5.2.3 Efficiency Improvement. We compare the average compu-
tation time required to select a batch of next crowdsourcing ques-
tions, which is computed as follows. We first measure the computa-
tion time to select all next crowdsourcing questions in order to reach
a certain accuracy, e.g., F1-measure of 0.9 for PERC, bDENSE, PC-
Pivot, and MinMax. One may recall that PERC next crowdsourcing
might trigger an update of the previous maximum-likelihood clus-
tering. We empirically found that these updates happen 20~25%
of the times after next crowdsourcing, and the times consumed for
such re-clusterings are also added in the total time required for
PERC. Since TC-clustering does not achieve such a high accuracy,
we instead consider the time required to obtain the highest possible
accuracy via TC-clustering. Next, we divide this time by the total
number of batches issued to crowd workers, and report this value
as the average computation time to select one batch of next crowd-
sourcing questions for the respective methods.

Figure 9 shows that the average time for one batch selection is
at least an order of magnitude faster in case of PERC, compared to
that of bDENSE, PC-Pivot, and MinMax. We note that the Y-axis
is logarithmic in these figures. For example, with the Landmarks
dataset, the average time to select one batch (with 120 questions)
using PERC is only 0.5 sec, whereas it requires about 15 sec, 12
sec, and 51 sec, respectively, to select a batch of same size using
bDENSE, MinMax, and PC-Pivot. Thus, our empirical results illus-
trate that PERC is at least an order of magnitude faster compared
to bDENSE, MinMax, and PC-Pivot, in terms of selecting the next
crowdsourcing questions.

5.24 Results with Cora Dataset. We present next crowdsourc-
ing results over the larger Cora dataset in Figure 10. We started

0

2

S .

g 2410 " PERE

g 2010 b’\E/)IEI’\\IASE — 1 [PDENS
— o 1

8 1610t | MinMax 2 s inMax

3 1.200° g o6

T 40008 £

2 80710 < 04

s 2 I H Y

5 40710 }

é 0.0"10° HI H 0 i

N 076 078 0.80 2K

4K 6K 8K 10K

next crowdsource questions o0 2 '°/,,
(b) Accuracy

Figure 10: Accuracy, cost, and efficiency improvements over Cora dataset

400
100

15

0.5
0.1

0.01
0.002

avg. time (sec) to select
a batch of questions

XX
<§$’00<91/’4fo E
N 4

(c) Efficiency

with 2K initial crowdsourced edges, and we set the batch size as 300
questions. Figures 10(a) and 10(b) demonstrate the cost and accu-
racy improvements of PERC. For example, to achieve F1-measure
= 0.8, PERC requires about 7.2K questions, whereas bDENSE and
MinMax require around 14K and 22K questions, respectively. The
maximum F1-measure reached by PC-Pivot over Cora is 0.74. In
Figure 10(c), we compare the average computation times required
to select a batch of 300 next crowdsourcing questions over Cora
dataset. The Y-axis is logarithmic. As earlier, PERC is 5~15 times
faster than both bDENSE and MinMax, e.g., PERC requires 1.5 sec
to select a batch of 300 questions, whereas bDENSE and MinMax
consume 7 sec and 20 sec, respectively, for the same.

5.2.5 Varying Batch Sizes. We analyze the impact of varying
batch sizes on crowdsourcing cost and accuracy (Figure 11). Smaller
batch sizes help in improving the accuracy and to reduce the crowd-
sourcing cost. This is because we do not know the corresponding
edge probabilities apriori; and hence, by issuing multiple questions
in batches, the overall quality would decrease. However, asking
questions in batches reduces the overall running time (i.e., next
batch selection time + crowdsourcing time), since many crowd work-
ers would be able to answer the questions in a batch in parallel.
In Figure 11, we show the number of next crowdsourcing ques-
tions required to reach Fl-measure=0.95 for PERC and bDENSE.
We present our results over Gymnastics dataset. As expected, this
crowdsourcing cost decreases with smaller batch sizes, for both
these methods. We also observed that PERC outperforms bDENSE
in terms of crowdsourcing cost under all batch sizes.

6 RELATED WORK

e Crowdsourcing in Data Management. Recently, crowdsourc-
ing has been adopted in video and image annotations, search rele-
vance, and natural language processing [1, 8]. Several systems have
been developed to incorporate human work into a database/mobile
system, e.g., CrowdDB, Deco, CrowdSearch, CDAS, CrowdForge,
TurKit, and Qurk [16, 18]. There are also studies on leveraging
crowd’s ability to improve data management tasks, e.g., selection,
sort, skyline, join, mining, classification, and max/top-k [3, 17].

o Crowdsourced Entity Resolution (ER). An important problem
in crowdsourced ER is to reduce the number of questions asked to
workers, e.g., a clustering-based method [21] where each question
is a group of records and asks workers to classify the records into
different clusters. Demartini et. al. [S] and Jeffrey et. al. [11] de-
signed crowdsourcing systems based on a probabilistic framework,
but does not employ transitivity to reduce the crowdsourcing cost.
Wang et. al. [22] and Vesdapunt et. al. [20] utilized transitivity to re-
duce the number of questions. Various models to select high-quality
questions were developed in [24, 25]. The most recent work [2]

used a partial order approach, which additionally requires each en-
tities having multiple attributes. More importantly, all these works
assume no crowd error, or employ majority voting.

Recently, MinMax, PC-Pivot, and DENSE [9, 19, 23] directly in-
corporated crowd errors in ER tasks. However, as we stated earlier,
these methods consider ad-hoc, local features to select next ques-
tions, such as individual paths, nodes, or the set of either positive
or negative edges. Hence, they generally fail to capture the strength
of the entire clustering, resulting in higher crowdsourcing cost in
order to achieve a reasonable ER accuracy.

o Dealing with Crowdsourcing Errors. Quality control is critical
in crowdsourcing [16]. Machine learning techniques have been em-
ployed to determine the quality of the crowd, e.g., [4, 13, 14]. Or-
thogonal to these works, our proposed solution incorporates crowd
errors while performing next crowdsourcing and ER tasks.

o Entity Resolution Algorithms. Entity resolution (ER), also known
as entity reconciliation, deduplication, or record linkage, is well
studied in data cleaning and integration. Many ER algorithms have
been proposed based on different input settings, e.g., single-pass
clustering, star clustering, cut clustering, correlation clustering, and
Markov clustering [7, 15]. We used correlation clustering because
this is the most natural setting for clustering a set of records that are
connected by both positive and negative edges [6]. Besides, our con-
tribution — reliability-based next crowdsourcing question selection
is orthogonal to the specific ER method employed.

7 CONCLUSIONS

We studied crowdsourced entity resolution together with erroneous
crowd answers. Our solution PERC does not require any user-defined
threshold values, and no apriori information about the error rate of
crowd workers. We formulated the problem considering an uncer-
tain graph model and using possible world semantics with edge
independence. We employed the notion of reliability in uncertain
graphs to identify the most effective next crowdsourcing questions.
Based on detailed empirical results with four real-world datasets,
PERC improves the accuracy by 15%, reduces the crowdsourcing
cost by 50%, and also decreases the next question selection time by
an order of magnitude compared to state-of-the-art approaches.

8§ ACKNOWLEDGEMENT

Research was supported by MOE Tier-1 M401020000 and NTU
M4081678. Any opinions, findings, and conclusions in this publi-
cation are those of the authors, and do not necessarily reflect the
views of the funding agencies.

REFERENCES

[1] O. Alonso, D. E. Rose, and B. Stewart. 2008. Crowdsourcing for Relevance
Evaluation. SIGIR Forum 42, 2 (2008), 9-15.

[2] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. 2016. Cost-Effective Crowdsourced
Entity Resolution: A Partial-Order Approach. In SIGMOD.

[3] L. Chen, D. Lee, and T. Milo. 2015. Data-driven Crowdsourcing: Management,
Mining, and Applications. In /CDE.

[4] O. Dekel and O. Shamir. 2009. Vox Populi: Collecting High-Quality Labels from
a Crowd. In COLT.

[5] G. Demartini, D. E. Difallah, and P. C.-Mauroux. 2012. ZenCrowd: Leveraging
Probabilistic Reasoning and Crowdsourcing Techniques for Large-scale Entity
Linking. In WWW.

[6] M. Elsner and W. Schudy. 2009. Bounding and Comparing Methods for Correla-
tion Clustering Beyond ILP. In /LP.

[7] L. Getoor and A. Machanavajjhala. 2013. Entity Resolution for Big Data. In
KDD.

[8] R. Gomes, P. Welinder, A. Krause, and P. Perona. 2011. Crowdclustering. In

NIPS.

A. Gruenheid, D. Kossmann, S. Ramesh, and F. Widmer. 2012. Crowdsourcing

Entity Resolution. Technical Report. ETH Zurich.

[10] O. Hassanzadeh, FE. Chiang, H. C. Lee, and R. J. Miller. 2009. Framework for
Evaluating Clustering Algorithms in Duplicate Detection. In VLDB.

[11] S.R. Jeffery, M. J. Franklin, and A. Y. Halevy. 2008. Pay-as-you-go User Feed-
back for Dataspace Systems. In SIGMOD.

[12] R. Jin, L. Liu, B. Ding, and H. Wang. 2011. Distance-Constraint Reachability
Computation in Uncertain Graphs. In VLDB.

[13] M. Joglekar, H. G.-Molina, and A. G. Parameswaran. 2013. Evaluating the Crowd
with Confidence. In KDD.

[14] D.R. Karger, S. Oh, and D. Shah. 2011. Iterative Learning for Reliable Crowd-
sourcing Systems. In NIPS.

[15] N. Koudas, S. Sarawagi, and D. Srivastava. 2006. Record Linkage: Similarity
Measures and Algorithms. In SIGMOD.

[16] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. 2012. CDAS: A
Crowdsourcing Data Analytics System. In VLDB.

[17] A. Marcus and A. G. Parameswaran. 2015. Crowdsourced Data Management:
Industry and Academic Perspectives. Foundations and Trends in Databases 6,
1-2 (2015), 1-161.

[18] A.Marcus, E. Wu, D. R. Karger, S. Madden, and R. C. Miller. 2011. Demonstra-
tion of Qurk: A Query Processor for Human Operators. In SIGMOD.

[19] V. Verroios and H. G.-Molina. 2015. Entity Resolution with Crowd Errors. In
ICDE.

[20] N. Vesdapunt, K. Bellare, and N. Dalvi. 2014. Crowdsourcing Algorithms for
Entity Resolution. In VLDB.

[21] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. 2012. CrowdER: Crowdsourcing
Entity Resolution. In VLDB.

[22] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. 2013. Leveraging Transi-
tive Relations for Crowdsourced Joins. In SIGMOD.

[23] S. Wang, X. Xiao, and C.-H. Lee. 2015. Crowd-Based Deduplication: An Adap-
tive Approach. In SIGMOD.

[24] F. L. Wauthier, N. Jojic, and M. L. Jordan. 2012. Active Spectral Clustering via
Iterative Uncertainty Reduction. In KDD.

[25] S.E. Whang, P. Lofgren, and H. G.-Molina. 2013. Question Selection for Crowd
Entity Resolution. In VLDB.

APPENDIX

Limitation of DENSE [19] with running example. The Dense con-
siders only either the set of positive edges (i.e., edges with majority
YES votes), or the set of negative edges (i.e., edges having major-
ity NO votes) between two disjoint record sets for calculating the
strength of evidences. A metric p-ratio is defined, which finds the
lack of strong evidences for clustering, and DENSE selects a pair
to crowdsource that has the maximum p-ratio. In particular, p-ratio
between sets A and B is calculated as follows.
’ ’ ’ ’
Pyi X Py X min{P—N P—Y (10)
N Ly

[9

Py1 X Py

Here, Y1 is the set of positive edges between A and R \ B, Y2 the

set of positive edges between B and R\ B, N the set of negative edges

across A and B, and Y the set of positive edges across A and B. The

set of all records are denoted by R. Let the probability for an edge
ae{Y1UY2JY U N} being correct be p(a), then we compute:

Py, = 1—[pla); Pyz = 1_[pla); Py = np(a);
aeY1 acY?2 acY

Py = []a-p@y Py=[]a-p@) Py =]]0-p@)
aeY1 acY2 acY

Py =[] p@: Py=]]0-p@) (11)
aeN aeN

Since p-ratios between the clusters (C1,Cz) and (Cs, C4) have

the same value, which is due to the weaker negative edges, i.e.
P, . .
ﬁ = %, DENSE assumes that asking a question across (Cy, Cy)
or (C3, Cy) is equivalent. However, in reality, asking a question be-

tween clusters C3 and Cy4 is more beneficial.

