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ABSTRACT

Graphs have become increasingly important to represehityhig
interconnected structures and schema-less data inclthtérigorld
Wide Web, social networks, knowledge graphs, genome and sci
entific databases, medical and government records. Thev@ass
scale of graph data easily overwhelms the main memory and com
putation resources on commodity servers. In these caseigvac
ing low latency and high throughput requires partitioning graph
and processing the graph data in parallel across a clusseradrs.
However, the software and and hardware advances that hakedvo
well for developing parallel databases and scientific agfilbns
are not necessarily effective for big-graph problems. Gra-
cessing poses interesting system challenges: graphsesprela-
tionships which are usually irregular and unstructured| #nere-
fore, the computation and data access patterns have paityoc
Hence, the last few years has seen an unprecedented iriterest
building systems for big-graphs by various communitiesuding
databases, systems, semantic web, machine learning, @nd-op
tions research. In this tutorial, we discuss the design®gtherg-
ing systems for processing of big-graphs, key featuressfiduted
graph algorithms, as well as graph partitioning and wortklbal-
ancing techniques. We emphasize the current challengelsigimd
light some future research directions.

1. INTRODUCTION

Querying and mining of graph data are essential for a widgeran
of emerging applications [4]. As graph problems grow larger
input size and complexity, they easily overwhelm the corapaon
and memory capacities of a single commodity server. However
graph processing also generates a unique workload [8] lasviol

e Poor Locality. Graphs represent relationships which can be
irregular and unstructured; and therefore, graph algmsth
often exhibit poor locality of memory access.

e |/O Intensive Operations. Graph algorithms usually have
high data-access-to-computation ratio — the runtime could
be dominated by waits for memory fetches.
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o Difficult to Parallelize. Due to the interconnected nature of
graph data, graph computations are irregular: It is difficul
to extract parallelism by partitioning. Unbalanced compu-
tational workload resulting from poor partitioning and syn
chronization overheads reduces scalability.

e Large Intermediate Results.While executing a graph com-
putation such as parallel graph isomorphism, the intermedi
ate results could be large, with a memory footprint larger
than the underlying graph.

In this three-hour tutorial, we first illustrate why statietie-art
distributed frameworks are not suitable for big-graph cotapons.
For example MapReduce performs well when the algorithm is
embarrassingly parallel [7]. Due to the linked structure of graph
datasets and the iterative nature of many graph algoritlinis,
difficult to represent graph algorithms using tapReduce ab-
straction. Several graph-indexing methods were also exgbfor
specific graph operations. Unfortunately, these indicesabpro-
vide the level of efficient random access required by graphpes
tation and general graph exploration during query proogsstor
graph operations, keeping data in the main memory is critisdt
enables fast random access and the reuse of intermedialis fes
iterative graph algorithms [17].

In this tutorial, we discuss distributed/shared in-membigy-
graph processing systems as well as a few disk-based siagler
systems that provide comparable performance. We cladsifset
systems into two broad categories based on their applicatip-
port: (1) systems for offline graph analytic and (2) systeanoh-
line graph querying. We teach the key features of these tpesty
of query workloads, and why we need different systems famthe
Finally, we conclude by highlighting major open problemstsas
dynamic graph partitioning and workload balancing.

2. TUTORIAL OUTLINE

Our tutorial consists of five parts, which are given below:

1. Introduction: We introduce the unique workload character-
istics of big-graphs processing, and why state-of-theliattibuted
frameworks do not perform well with big-graph computations

2. Systems for Offline Graph Analytic: Offline graph analytic
systems perform an iterative, batch processing over tliegmaph
dataset until the computation satisfies a fixed-point orgtapcri-
terion. In this section, we first introduce graph algorithwisich
require iterative, batch processing, eBageRank computation,
recursive relational queries, clustering, social netvadilysis, and
machine learning/ data mining algorithms (e.g., belieppgation,
gaussian non-negative matrix factorization).



We discuss in details how two offline analytic algorithmanedy
PageRank computation and belief propagation can be efficiently
implemented irPregel [9], which is a vertex-centric computation
model and follows the original Bulk Synchronous ParalleSB
model. Next, we show how the same two algorithms can be im-
plemented even more efficiently GraphLab [7], which follows
asynchronous vertex-centric computation, and thereby significantly
accelerates the convergence of iterative machine-legerid graph
algorithms. We conclude this section by discussBrgphChi [6]
andX-Stream [12], which store the graph data in the disk on a sin-
gle server, yet they provide comparable performance toxistirgy
distributed/ shared in-memory big-graph systems for adftinaph
analytic algorithms.

3. Systems for Online Graph Querying:Online graph queries,
e.g., reachability query, finding the shortest path, sw#plgmatch-
ing, and SPARQL queries require very fast response time, and
these queries often explore only a small fraction of theremfiaph
dataset, as opposed to the iterative, batch processingheventire
graph dataset. We discuss one domain-specific language) fDiSL
online graph queryingHorton [14], and two systems that sup-
port online graph traversas-SPARQL [13] andTrinity [17]. We
further demonstrate why in-memory graph-traversal-baseet-
ations are often more effective in answeriSARQL and sub-
graph matching queries as compared to performing multigle j
operations using the traditional database managemeetnsyst

4. Dynamic Graph Partitioning: In order to reduce the inter-
machine communication, it is important to partition the erig
ing graph data effectively across multiple servers. Howewal-
world graphs often exhibit a skewg@dwer-law degree distribution;
and hence, it is difficult to partition and represent suclplsan a
distributed environment. We first show hdvewerGraph [2] re-
duces this problem by performing a balanced vertex-cuteirthut
graph and by keeping mirrors of cut-vertices at multiplevees.
We also discusSEDGE [16] — a complementary partitioning
scheme for reducing the inter-machine communication. Byoa
graph partitioning, on the other hand, is critical for osligraph
queries, since workloads on the vertices change frequémtign-
line queries. We illustrate dynamic graph partitioningasdgies
in Mizan [5] and SEDGE [16], and the overlapping partitioning
scheme in [10], which updates its partitions dynamicallgdzhon
the past read/write patterns.

5. Major Open Problems: We conclude by discussing the cur-
rent challenges and some interesting future researchidinsc

a. Which one is a better design choice for queries on big-graphs (10]

— “scaling out” on cheap, commodity clusters (distributeenm
ory) vs. “scaling up” with more cores and more memory (shared
memory)? Perhaps, for online graph queries, scaling up &terb
option due to their lower communication cost.

b. Do we need to vary the partitioning and re-partioning strate
based on the graph data, algorithms, and systems?

¢. Should we decouple query processors from graph storage so[14]

that we can scale up both the layers independently?
d. What will be the roles of modern hardware in accelerating
big-graphs processing?

e. Do we need stand-alone systems only for graph processing,

such aslrinity and GraphLab; or can they be integrated with the
existing big-data and dataflow systems, é3raphX [15], Naidad
[11], andepiC [3]?

What we shall not cover in this tutorial. We shall not discuss ex-
isting graph databases, suciNe04j andHyperGraphDB, as they
usually cannot manage graphs that are distributed amontipteaul
servers. We do not focus @PARQL engines and RDF data-stores
as they are covered in other tutorials [1]. Finally, we dodistuss
specialty hardware systems for big-graphs processing, Edp-
rado (shared-memory) anBlueGene/L (distributed-memory), as
we focus on software techniques.
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