
Querying Knowledge Graphs by Example Entity Tuples

(Extended Abstract)

Nandish Jayaram1 Arijit Khan2 Chengkai Li1 Xifeng Yan3 Ramez Elmasri1

1University of Texas at Arlington, 2Nanyang Technological University, Singapore, 3University of California, Santa Barbara

Abstract—We witness an unprecedented proliferation of knowl-
edge graphs that record millions of entities and their rela-
tionships. While knowledge graphs are structure-flexible and
content-rich, they are difficult to use. The challenge lies in the
gap between their overwhelming complexity and the limited
database knowledge of non-professional users. As an initial
step toward improving the usability of knowledge graphs, we
propose to query such data by example entity tuples, without
requiring users to form complex graph queries. Our system,
GQBE (Graph Query By Example), automatically discovers a
weighted hidden maximum query graph based on input query
tuples, to capture a user’s query intent. It then efficiently finds
top-ranked approximate answer graphs and answer tuples.

I. INTRODUCTION

There is an unprecedented proliferation of knowledge graphs
that record millions of entities (e.g., persons, products, or-
ganizations) and their relationships. Numerous applications
are tapping into such graphs in domains such as search,
recommendation systems, business intelligence and health in-
formatics. These graphs are often stored in relational databases,
graph databases and triplestores. In retrieving data from these
databases, the norm is to use structured query languages such
as SQL, SPARQL, and those alike. However, writing structured
queries requires extensive experience in query language, data
model, and good understanding of particular datasets [1].
Motivated by the aforementioned usability challenge, we

build GQBE (Graph Query by Example) [2], [3], a system that
queries knowledge graphs by example entity tuples instead of
graph queries. Given a knowledge graph and a query tuple con-
sisting of entities, GQBE finds similar answer tuples. Consider
the scenario where a Silicon Valley business analyst wants to
find entrepreneurs who founded technology companies head-
quartered in California. Suppose she knows an example query
tuple such as 〈Jerry Yang, Yahoo!〉 that satisfies her query intent.
Given such an example tuple as input to GQBE, the answer
tuples can be 〈Steve Wozniak, Apple Inc.〉 and 〈Sergey Brin, Google〉,
which are founder-company pairs. If the query tuple consists
of 3 or more entities (e.g., 〈Jerry Yang, Yahoo!, Sunnyvale〉), the
answers will be similar tuples of the same cardinality (e.g.,
〈Steve Wozniak, Apple Inc., Cupertino〉). GQBE also supports multiple
query tuples as input which collectively better capture the user
intent, and further details of the same can be found in [3].

Related Work: Substantial progress has been made on query
mechanisms that help users construct query graphs or even do
not require explicit query graphs. Paradigms such as keyword-
based query formulation [4], [5], interactive and form-based

query formulation [6], [7], and approximate graph query [8]
require effort from users to convey the query intent. For
instance, using keyword-based methods, not only a user may
find it challenging to clearly articulate a query, but it is also
non-trivial for a query system to precisely separate these
keywords and correctly match them with entities, entity types
and relationships. In contrast, a GQBE user only needs to know
the names of some entities in example tuples, without being
required to specify how exactly the entities are related. EQ [9]
proposes the concept of exemplar queries which is similar to
the paradigm of GQBE.

II. GRAPH QUERY BY EXAMPLE

Problem Statement: A knowledge graph G is a directed
multi-graph with node set V (G) and edge set E(G). Each
node v∈V (G) represents an entity and each labeled edge
e=(vi, vj)∈E(G) denotes a directed relationship from entity vi
to entity vj . A tuple t=〈v1, . . . , vn〉 is an ordered list of entities
in G. In the aforementioned Silicon Valley analyst example,
t=〈Jerry Yang, Yahoo!〉. Given a knowledge graph G and a query
tuple t, our goal is to find the top-k similar answer tuples t′.

Figure 1 depicts the overall architecture of GQBE. The input
to GQBE is only an example query tuple. The query graph
discovery module automatically discovers a maximum query
graph (MQG) to approximately capture the user’s query intent.
It is unlikely to find answer graphs exactly matching the MQG,
so the answer space modeling and query processing compo-
nents find approximately matching answer graphs efficiently.
Various algorithms and other details can be found in [3], while
we only provide a brief overview here due to space limitations.

Maximum Query Graph Discovery: Edges are weighted to
capture the importance of relationships, using several distance-
based and frequency-based heuristics. The weight w(e) of an
edge e=(u, v) is 1) directly proportional to its inverse edge
frequency, ief(e), which captures how rare a relationship is in
the data graph, 2) inversely proportional to its participation,
p(e), which determines the number of edges in the data graph
that share the same label and one of e’s end nodes (u or v),
and 3) inversely proportional to d(e), the distance of edge e
from the query entities.

A greedy heuristic is used to discover the MQG that captures
important relationships while being reasonably small, since the
problem of finding an m-edged graph containing all query
entities while maximizing the total edge weight is NP-hard [3].
An example MQG for 〈Jerry Yang, Yahoo!〉 is shown in Fig. 1.

Fig. 1. The Architecture and Components of GQBE

Query PCC Query PCC Query PCC Query PCC

F1 0.79 F2 0.78 F3 0.60 F4 0.80

F5 0.34 F6 0.27 F7 0.06 F8 0.26

F9 0.33 F10 0.77 F11 0.58 F12 undefined

F13 undefined F14 0.62 F15 0.43 F16 0.29

F17 0.64 F18 0.30 F19 0.40 F20 0.65

TABLE I. PEARSON CORRELATION COEFFICIENT (PCC) BETWEEN

GQBE AND AMAZON MECHANICAL TURK WORKERS, k=30

Answer Space Modeling and Query Processing: To find
approximate matches to the MQG, GQBE models the space of
all answer graphs as a query lattice formed by the subsumption
relationship between all subgraphs of the MQG. The query
lattice for 〈Jerry Yang, Yahoo!〉 is shown in Fig. 1. The top-most
node in the lattice is the MQG, and the bottom-most nodes
are called minimal query trees which are trees that connect all
the query entities in the MQG. An approximate answer graph
is defined as an edge-isomorphic match to some query graph
(answer tuples are projected from these answer graphs), which
is a subgraph of the MQG, and is present in the query lattice
as a lattice node. We employ an upper-bound based bottom-up,
best-first strategy to explore the lattice, that allows sharing of
computation. We start with evaluating the minimal query trees,
as multi-way join queries. After a query graph is processed,
its answers are materialized in files. To process a query Q
that is not a minimal query tree, at least one of its children
Q′=Q−e must have been processed, whose results are used
to quickly perform a right-deep hash-join. The node that has
the best upper-bound is always chosen to evaluate next. Every
time a lattice node returns no matching answer graphs, all of its
super-graphs are pruned and the lattice changes dynamically.
The algorithm terminates when the current score of the kth

best answer tuple so far is greater than the upper-bound score
of the next best lattice node chosen by the algorithm, whose
correctness is guaranteed by a theorem [3] that states that we
cannot get any answer tuple better than the current top-k by
executing any other unevaluated node in the lattice.

III. EXPERIMENTS

We evaluated GQBE using a preprocessed Freebase data
graph containing 28M nodes, 47M edges and 5,428 distinct
edge labels. We evaluated 20 queries on this graph and
obtained the top-30 ranked answers from GQBE. User studies
were conducted on Amazon Mechanical Turk to study the
quality of this ranking, using Pearson Correlation Coefficient
(PCC). A PCC value in the range of 0 to 1 indicates a positive
correlation with users’ preferences. PCC is undefined when
all entries in a list have the same rank. Table I shows that
GQBE attained a positive correlation on 18 queries. We also
compared the accuracy of GQBE with NESS [8] and EQ [9]

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25

P
re

c
is

io
n

-a
t-

K

Top-K

GQBE NESS EQ

(a) P@k

 0

 0.1

 0.2

 0.3

 0.35

 10 15 20 25

M
A

P

Top-K

GQBE NESS EQ

(b) MAP

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25

n
D

C
G

Top-K

GQBE NESS EQ

(c) nDCG

Fig. 2. Accuracy of GQBE, NESS and EQ over 11 Freebase Queries

using three measures: precision-at-k (P@k), mean average
precision (MAP), and normalized discounted cumulative gain
(nDCG). NESS is a graph querying framework that finds
approximate matches of query graphs with unlabeled nodes
which correspond to query entity nodes in MQG. NESS does
not consider edge-labeled graphs. We adapted it by requiring
each candidate node v′ of v to have at least one incident edge
in the data graph bearing the same label of an edge incident
on v in the MQG. EQ does not provide a definitive way
of discovering query graph given an exemplar query tuple.
Therefore, we provided the MQG discovered by GQBE as the
input query graph to EQ. The query processing in EQ is similar
to NESS, but it requires answer graphs to exactly match the
query graph structure. Figure 2 shows that GQBE outperforms
NESS and EQ on all three measures. Only 11 of the 20
queries were considered for this experiment since no answer
tuples were returned by EQ for the rest of them. Experiments
highlighting the improved accuracy of GQBE with multi-tuple
queries, efficient query processing, accuracy results over the
DBpedia dataset, among others, can be found in [3].

REFERENCES

[1] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi,
and C. Yu, “Making database systems usable,” in SIGMOD, 2007.

[2] N. Jayaram, M. Gupta, A. Khan, C. Li, X. Yan, and R. Elmasri, “GQBE:
querying knowledge graphs by example entity tuples,” in ICDE, 2014.

[3] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri, “Querying
knowledge graphs by example entity tuples,” TKDE, vol. 27, no. 10,
pp. 2797–2811, 2015.

[4] J. Pound, I. F. Ilyas, and G. E. Weddell, “Expressive and flexible access
to web-extracted data: a keyword-based structured query language,” in
SIGMOD, 2010.

[5] J. Yao, B. Cui, L. Hua, and Y. Huang, “Keyword query reformulation
on structured data,” ICDE, 2012.

[6] E. Demidova, X. Zhou, and W. Nejdl, “Freeq: an interactive query
interface for freebase,” in WWW, 2012.

[7] M. Jarrar and M. D. Dikaiakos, “A query formulation language for the
data web,” TKDE, vol. 24, no. 5, pp. 783–798, 2012.

[8] A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao, “Neigh-
borhood based fast graph search in large networks,” in SIGMOD, 2011.

[9] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar
queries: Give me an example of what you need,” in VLDB, 2014.

