
Towards Indexing Functions:
Answering Scalar Product Queries

Arijit Khan, Pouya Yanki, Bojana Dimcheva, Donald Kossmann

Systems Group
ETH Zurich

Moving Objects
Intersection Finding

Moving Object
Database

Position at a future time instance t

[x = r cos(ωt) y = r sin(wt)]

[x = p + ut y = q + vt]

r, ω

p, q, u, v

1/ 15

AX1 + BX2 + CX3 + DX4 + EX5 + FX6 + GX7 ≤ S²

X1 = r2 + p2 + q2 + 2rp + 2rq A = 1
X2 = 2[u(r-p) + v(r-q)] B = t
X3 = -2rp C = 1+ sin(ωt)
X4 = -2rq D = 1+ cos(ωt)
X5 = -2ru E = t[1+ sin(ωt)]
X6 = -2rv F = t[1+ cos(ωt)]
X7 = u2+v2 G = t2

Find all object pairs that will be within
distance S at time instance t

Moving Objects
Intersection Finding

r, ω

p, q, u, v

2/ 15

Moving Object
Database

AX1 + BX2 + CX3 + DX4 + EX5 + FX6 + GX7 ≤ S²

X1 = r2 + p2 + q2 + 2rp + 2rq A = 1
X2 = 2[u(r-p) + v(r-q)] B = t
X3 = -2rp C = 1+ sin(ωt)
X4 = -2rq D = 1+ cos(ωt)
X5 = -2ru E = t[1+ sin(ωt)]
X6 = -2rv F = t[1+ cos(ωt)]
X7 = u2+v2 G = t2

Find all object pairs that will be within
distance S at time instance t

Moving Objects
Intersection Finding

r, ω

p, q, u, v

Function (known) Query
Parameters
(unknown)

2/ 15

Moving Object
Database

AX1 + BX2 + CX3 + DX4 + EX5 + FX6 + GX7 ≤ S²

Find all object pairs that will be within
distance S at time instance t

Moving Objects
Intersection Finding

r, ω

p, q, u, v

Scalar Product Query: (A B C D E F G) . (X1 X2 X3 X4 X5 X6 X7) ≤ S²

Function (known) Inequality
Parameter
(unknown)

Query
Parameters
(unknown)

2/ 15

Moving Object
Database

Scalar Product Query: (A B C D E F G) . (X1 X2 X3 X4 X5 X6 X7) ≤ S²

r, ω

p, q, u, v

Moving Objects
Intersection Finding

Function (known) Inequality
Parameter
(unknown)

Query
Parameters
(unknown)

2/ 15

Moving Object
Database

More Applications: Complex
SQL Function

Patient
ID

S B

P1 5 80
P2 6 40
P3 4 70
P4 6 50

ARIMA Time Series Prediction Model:

Heart-Rate at time t = S × t + B

Patient Dataset for
Heart-Rate Prediction

3/ 15

Find all patients for whom the predicted
heart rate at time t is more than an input
threshold H.

CREATE FUNCTION Critical_Patient (
INPUT double Threshold, double Time
RETURN PatientID
FROM Patient
WHERE S × Time + B ≥ H)

More Applications: Complex
SQL Function

Patient
ID

S B

P1 5 80
P2 6 40
P3 4 70
P4 6 50

ARIMA Time Series Prediction Model:

Heart-Rate at time t = S × t + B

Patient Dataset for
Heart-Rate Prediction

Unknown

3/ 15

(Time, 1) . (S, B) ≥ H
Scalar Product
Query

More Applications: Complex
SQL Function

Patient
ID

S B

P1 5 80
P2 6 40
P3 4 70
P4 6 50

Patient Dataset for
Heart-Rate Prediction

S × Time + B ≥ H

Unknown

Function (known) Inequality
Parameter
(unknown)

Query
Parameters
(unknown)

4/ 15

More Applications: Complex
SQL Function

Patient
ID

S B

P1 5 80
P2 6 40
P3 4 70
P4 6 50

Patient Dataset for
Heart-Rate Prediction

S × Time + B ≥ H

Unknown

4/ 15

Problem Statement

Find all data points x that satisfy:
(a, F(x)) ≥ b

Inequality Query

Find the top-k data points x satisfying
(a, F(x)) ≥ b, that also minimize:
|(a, F(x))−b|/|a|

Top-k Nearest Neighbor Query

Applications:

 moving-object-intersection finding

 half-space range search

 complex SQL functions

Applications:

 top-k nearest points to hyper plane

 active learning

5/ 15

Related Work

- Agarwal et. al. [PODS ’98], Matousek et. al. [Computational Geometry ‘92]

Half-space Range Searching

Linear Constraint Queries

Nearest Neighbor Queries

Top-k Queries with Ranking Function

Index for Moving Objects

- Goldstein et. al. [PODS ’97]

- Liu et. al. [ICML ’12], Jain et. al. [NIPS ‘10]

- Chang et. al. [SIGMOD ’00], Xin et. al. [SIGMOD ‘07], Li et. al. [SIGMOD ‘05], Ilyas
et. al. [ACM Comp. Survey ‘08], Hristidis et. al. [SIGMOD ‘01], Ram et. al. [KDD ‘12]

- Nascimento et. al. [R-tree, SAC ’98], Sistla et. al. [ICDE ‘97], Kollios et. al.
[PODS ‘99], Saltenis et. al. [TPR-Tree, SIGMOD ‘00], Jensen et. al. [Bx-Tree, VLDB
‘04], Tao et. al. [SIGMOD ‘02], Zhang et. al. [MBR Tree, VLDB J ‘12]

6/ 15

THEORY

MACHINE
LEARNING

DATABASES

Related Work

6/ 15

- Agarwal et. al. [PODS ’98], Matousek et. al. [Computational Geometry ‘92]

Half-space Range Searching

Linear Constraint Queries

Nearest Neighbor Queries

Top-k Queries with Ranking Function

Index for Moving Objects

- Goldstein et. al. [PODS ’97]

- Liu et. al. [ICML ’12], Jain et. al. [NIPS ‘10]

- Chang et. al. [SIGMOD ’00], Xin et. al. [SIGMOD ‘07], Li et. al. [SIGMOD ‘05], Ilyas
et. al. [ACM Comp. Survey ‘08], Hristidis et. al. [SIGMOD ‘01], Ram et. al. [KDD ‘12]

- Nascimento et. al. [R-tree, SAC ’98], Sistla et. al. [ICDE ‘97], Kollios et. al.
[PODS ‘99], Saltenis et. al. [TPR-Tree, SIGMOD ‘00], Jensen et. al. [Bx-Tree, VLDB
‘04], Tao et. al. [SIGMOD ‘02], Zhang et. al. [MBR Tree, VLDB J ‘12]

THEORY

MACHINE
LEARNING

DATABASES

Planar Index:
Geometrical Indexing

Query Processing using Planar Index

X

Y

x1

x2

x3x4

x5x6

7/ 15

AX1 + BX2 + CX3 + DX4 + EX5 + FX6 + GX7 ≤ S²

Find all object pairs that will be within
distance S at time instance t

Moving Objects
Intersection Finding

r, ω

p, q, u, v

Scalar Product Query: (A B C D E F G) . (X1 X2 X3 X4 X5 X6 X7) ≤ S²

Function (known) Inequality
Parameter
(unknown)

Query
Parameters
(unknown)

7/ 15

Moving Object
Database

Planar Index:
Geometrical Indexing

Query Processing using Planar Index

X

Y

x1

x2

x3x4

x5x6

7/ 15

Planar Index:
Geometrical Indexing

One Planar Index = Collection of Parallel Hyper-planes
Passing through the Data Points

X

Y

x1

x2

x3x4

x5x6

Query Processing using Planar Index

p1p2p3p4p5p6

r1

r2

r3

r4

r5

r6

7/ 15

Planar Index:
Geometrical Indexing

Query: (a, x) ≥ b

X

Y

x1

x2

x3x4

x5x6

Query Processing using Planar Index

q2

q1

7/ 15

Planar Index:
Geometrical Indexing

Query: (a, x) ≥ b

X

Y

x1

x2

Query Processing using Planar Index

Accept
q2

q1 p1

r1

7/ 15

Planar Index:
Geometrical Indexing

Query: (a, x) ≥ b

X

Y

x5
x6

Query Processing using Planar Index

Reject

q2

q1

r5

p5

7/ 15

Planar Index:
Geometrical Indexing

Query: (a, x) ≥ b

X

Y

x3
x4

Query Processing using Planar Index

Verify

q2

q1

r3

p3

7/ 15

Reject

Planar Index:
Geometrical Indexing

Query: (a, x) ≥ b

X

Y

x3

x4

Query Processing using Planar Index

Verify

x5
x6

x1

x2

Accept

7/ 15

Planar Index:
Time and Space Complexity

Query Processing using Planar Index

Index Time: O(n log n)

Index Space: O(n)

Query Processing Time: O(d log n + t) ~ O(d n)

Query: (a, x) ≥ b

X

Y

Accept

Verify

Reject

8/ 15

Multiple Planar Indices

Multiple Planar Indices

X

Y

X

Y Query: (a, x) ≥ b

9/ 15

Best Index Selection
at Query Time

Planar Index at Right is Better for the Given Query

X

Y

X

Y Query: (a, x) ≥ b

Accept

VerifyReject

Accept
Reject

9/ 15

Top-k Nearest Neighbor Query

Query: (a, x) ≥ b; Top-k Closest Points to
Query Hyper plane

X

Y

x1x2

x3

x4

x5
x6

Top-k Nearest Neighbor Query

x7
x8

10/ 15

Top-k Nearest Neighbor Query

Query: (a, x) ≥ b; Top-2 Closest Points to
Query Hyper plane

X

Y

x1x2

x3

x4

x5

x6

x7
x8

Reject

10/ 15

Top-k Nearest Neighbor Query

Reject

Top-k Nearest Neighbor Query

Query: (a, x) ≥ b; Top-2 Closest Points to
Query Hyper plane

X

Y

x1x2

x3

x4

x5

x6

x7
x8

Verify

Process X6, X5

X5

Top-2 Buffer

10/ 15

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Query: (a, x) ≥ b; Top-2 Closest Points to
Query Hyper plane

X

Y

x1x2

x3

x4

x5

x6

x7
x8

Process X4

X5

X4

Top-2 Buffer

Lower
Bound
Distance

10/ 15

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Query: (a, x) ≥ b; Top-2 Closest Points to
Query Hyper plane

X

Y

x1x2

x3

x4

x5

x6

x7
x8

Process X3

X3

X4

Top-2 Buffer

Lower
Bound
Distance

10/ 15

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Query: (a, x) ≥ b; Top-2 Closest Points to
Query Hyper plane

X

Y

x1x2

x3

x4

x5

x6

x7
x8

Process X2

X3

X4

Top-2 Buffer

Lower
Bound
Distance

10/ 15

Top-k Nearest Neighbor Query

Top-k Nearest Neighbor Query

Query: (a, x) ≥ b; Top-2 Closest Points to
Query Hyper plane

X

Y

x1x2

x3

x4

x5

x6

x7
x8

Process X2

X3

X4

Top-2 Buffer

Lower
Bound
Distance

Reject

Prune

10/ 15

Top-k Nearest Neighbor Query

List of Experiments

Datasets:
- Real-World: CMoment, Ctexture, Electricity Consumption
- Synthetic: Independent, Correlated, Anti-Correlated

List of Experiments:
- Efficiency vs. No of Index
- Efficiency vs. No of Dimension
- Efficiency vs. Randomness of Query
- Efficiency vs. Query Selectivity
- Pruning Capacity vs. No of Index
- Pruning Capacity vs. No of Dimension
- Pruning Capacity vs. Randomness of Query
- Pruning Capacity vs. Query Selectivity
- Scalability of Index Building, Query Processing
- Dynamic Index Updating
- Memory Usage of Planar Index

Experimentally Evaluated Planar
Index in:

 Moving-Object Intersection

 Top-k Nearest Neighbor Query

11/ 15

Dataset and Query

Data Points # Dimension # Attribute Range

CMoment (Real-World) 68,040 9 (― 4.15, 4.59)

Independent (Synthetic) 1,000,000 2 - 14 (1, 100)

Datasets:

Query: Q1 X1 + Q2 X2 + … + Qd Xd ≥ 75 (Q1 + Q2 + … + Qd)

Randomness of Query (QR): Qi∈ (1,n)

Query Selectivity

12/ 15

Efficiency (Real-World Dataset)

Dimension = 9
Index = 100

13/ 15

1.13 ~ 4.5 times better
than Baseline

Efficiency (Synthetic Dataset)

14/ 15

Dimension = 2 Dimension = 6

Index = 100

12 ~ 170 times better
than Baseline

1.6 ~ 400 times better
than Baseline

Application: Moving Object
Intersection

Intersection Finding among 5K × 5K Moving Objects

Objects moving with
uniform velocity

Objects moving with
acceleration

15/ 15

12 ~ 50 times better
than Baseline

27 ~ 55 times better
than Baseline

Conclusion

Scalar product query widely applicable

Planar index – one generalized index for many problems

Application in moving object intersection finding

Future Work: Dynamic updates in planar indices based on past
query workload

Software and Dataset: http://people.inf.ethz.ch/khana/software/scalar.tar.gz
(Publicly Available)

