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ABSTRACT
We propose a new approach to conduct static analysis for
security vetting of Android apps, and built a general frame-
work, called Amandroid for determining points-to informa-
tion for all objects in an Android app in a flow and context-
sensitive way across Android apps components. We show
that: (a) this type of comprehensive analysis is completely
feasible in terms of computing resources needed with mod-
ern hardware, (b) one can easily leverage the results from
this general analysis to build various types of specialized se-
curity analyses – in many cases the amount of additional
coding needed is around 100 lines of code, and (c) the re-
sult of those specialized analyses leveraging Amandroid is
at least on par and often exceeds prior works designed for
the specific problems, which we demonstrate by comparing
Amandroid’s results with those of prior works whenever we
can obtain the executable of those tools. Since Amandroid’s
analysis directly handles inter-component control and data
flows, it can be used to address security problems that re-
sult from interactions among multiple components from ei-
ther the same or di↵erent apps. Amandroid’s analysis is
sound in that it can provide assurance of the absence of the
specified security problems in an app with well-specified and
reasonable assumptions on Android runtime system and its
library.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Validation; K.6 [Management of Computing
and Information Systems]: Security and Protection

General Terms
Static Analysis; Mobile Security
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1. INTRODUCTION
The Android smart-phone platform is immensely popular

and has by far the largest market share among all types of
smartphones worldwide. However, there have been widely
reported security problems due to malicious or vulnerable
applications running on Android devices [15, 19, 34, 36, 37].
The current solutions to those security problems are mostly
reactive (e.g., pulling an app o↵ the market after poten-
tial damage may have already been done). There have not
been e↵ective vetting methods that market operators can
rely upon to ensure apps entering a market (e.g., Google
Play) are free of certain types of security problems. Often
times, they have to resort to dynamic analysis — running
an app in a testing environment with the hope of identifying
the problematic behaviors, if any, during the test run (e.g.,
Google Bouncer [3]).

Many security problems of Android apps can be discov-
ered by static analysis on the Dalvik bytecode of the apps,
and there have been a number of earlier e↵orts along this
line [8, 11, 14, 17, 20, 23, 25]. Compared with dynamic anal-
ysis, static analysis has the advantage that a malicious app
cannot easily evade detection by changing their behaviors
in a testing environment, and it can also provide a compre-
hensive picture of an app’s possible behaviors as opposed to
only those that manifest during the test run. Due to the in-
herent undecidability nature of determining code behaviors,
any static analysis method must make a trade-o↵ between
computing time and the precision of analysis results. Preci-
sion can be characterized as metrics on: (a) missed behaviors
(app behaviors missed by the analyzer that may present se-
curity risks, also referred to as false negatives), and (b) false
alarms (behaviors that an app does not possess but the an-
alyzer fails to rule out, also referred to as false positives).

Android Static Analysis Challenges: A practical chal-
lenge in applying static analysis is to control the rate of false
alarms while not missing any (potentially dangerous) behav-
iors of apps. This is especially significant due to a number
of features of Android.

1. Android is an event-based system. The control flow is
driven by events from an app’s environment that can trig-
ger various method calls. How to capture all the possible



control flow paths in this open and reactive system while
not introducing too many spurious paths (false alarms)
is a significant challenge.

2. The Android runtime consists of a large base of library
code that an app depends upon. The event-driven na-
ture makes a large portion of the control-flow involve the
Android library. While fully analyzing the whole library
code could improve the analysis precision, it may also be
prohibitively expensive.

3. Android is a component-based system and makes exten-
sive use of inter-component communication (ICC). A com-
ponent can send an intent to another component. The
target of an ICC could be specified explicitly in the intent
or be implicit and decided at runtime. Both control and
data can flow through the ICC mechanism from one com-
ponent to another. Capturing all ICC flows accurately is
a major challenge in static analysis.

Prior research has attempted to address some of the above
challenges. For example, FlowDroid [6, 17] formally models
the event-driven life cycle of an Android app in a “dum-
myMain” method, but it does not address ICC. Epicc [25]
statically analyzes ICC and uses an IDE [29] framework to
solve for ICC call parameters, but does not link the ICC call
sources to targets and does not perform dataflow analysis
across component-boundaries. CHEX [23] uses a di↵erent
approach to the modeling of the Android environment, by
linking pieces of code reachable from entry points (called
splits) as a way to discover data flows between the Android
application components, but it does not address data flow
through ICC. These prior works have all inspired this work.
We designed and built Amandroid1 – an inter-component
data flow analysis framework tailored for Android apps. The
executable and source of Amandroid are publicly available.2

The main contributions from Amandroid are:
1. Amandroid computes points-to information for all ob-

jects and their fields at each program point and calling
context. The points-to information is extremely useful
for analyzing a number of security problems that have
been addressed in prior works using customized methods.
Amandroid can be used to address these wide-range se-
curity problems directly with very little additional work.
We also show that such comprehensive analysis scales to
large apps.

2. As part of the computation of object points-to informa-
tion, Amandroid can build a highly precise inter-procedural
control flow graph (ICFG) of the whole app, that is both
flow and context sensitive [24]. This is a side benefit of
our approach compared to prior works that have adopted
existing static analysis frameworks (e.g., Soot [32] and
Wala [16]), which build ICFG with less precision [4, 22].

3. Amandroid’s ICFG includes inter-component communi-
cation (ICC) edges. That is, Amandroid treats ICC just
like method calls, and both control and data can flow
on the edges. Amandroid is able to conduct an elemen-
tary string analysis (due to its object-sensitivity) for in-
ferring ICC call parameters, and links the ICC source to
the call targets based on a flow/context-sensitive match-
ing algorithm. Amandroid models the Android environ-

1Aman means safe/secure in the Indonesian language.
2Amandroid is available in the Sireum software distribution
at http://amandroid.sireum.org

ment for both control and data, so that important intent
data flows can be captured according to inherent Android
properties. We call Amandroid’s ICFG together with
each node’s reaching fact set as Inter-component Data
Flow Graph (IDFG).

4. Amandroid builds the data dependence graph (DDG) of
the app from the IDFG. An analyst can add a plugin on
top of Amandroid to detect the specific security problem
he/she is interested in. Through extensive experimenta-
tion, we demonstrate that a variety of security problems
can be reduced to querying DDG and IDFG.

We evaluated Amandroid on hundreds of real-world apps
(753 Google Play apps shared by the Epicc group, and 100
potentially malicious apps from Arbor Networks). Our ex-
perimental results show that Amandroid scales well. We
used Amandroid to address security problems such as pass-
word leakage, OAuth token leakage, intent injection, and
misuse of crypto APIs. The core framework of Amandroid
takes tens of seconds to analyze one app on average. All the
specialized analyses require very little additional coding ef-
fort (around 100 LOC) to leverage Amandroid’s IDFG and
DDG to address the specific problem, and the additional
running time is negligible (typically in the order of tens of
miliseconds).

We then experimentally compare Amandroid with two
static analyzers for Android: FlowDroid [6, 17] and Epicc [25],
and show that Amandroid can address a wide range of se-
curity problems due to inter-component communications in
Android that cannot be handled by these existing tools.
Amandroid also found multiple crucial security problems in
Android apps that were never reported before in the litera-
ture.

The rest of the paper is organized as follows. Section 2
gives a motivating example. Section 3 describes in detail
Amandroid’s analysis methods. We discuss experimentation
of our approach in Section 4, limitations of Amandroid in
Section 5, and related research in Section 6.

2. A MOTIVATING EXAMPLE
A malicious app can conduct bad behaviors by manipu-

lating the inter-component nature of Android system and
try to obfuscate its true objectives. Figure 1a shows an ex-
ample of such apps (named “sensitive-sms”), with snippets
of Java code shown in the boxes above the dotted line, each
of which represents a component of the app. In Android,
an Activity component implements the UI of the app, and
a Broadcast Receiver component receives a broadcast mes-
sage from one component (or the system) and takes certain
actions. An Android app does not have a “main” method;
rather, components are invoked through the various callback
methods (including lifecycle methods). The control flows
and data flows among the app components through the An-
droid system are labeled with the event number. Depending
on the events, the system invokes the lifecycle methods of
the components. It also remembers the recently sent in-
tents and passes them around, which can be abstracted in a
component-level environments.

The following sequence of events as labeled in the fig-
ure can happen in reality: (1) the user (or another app)
launches DataGrabber ; (2) this causes the Android system to
invoke the component’s lifecycle method onCreate(); (3) this
method creates an explicit intent and sends it (L9 ) to a



(a) A possible execution sequence of the “sensitive-sms” app

(b) The Life Cycle Diagram of

an Activity (adapted from [1])

Figure 1: An Android app and an Activity lifecycle

BroadcastReceiver named Forwarder ; (4) the system invokes
Forwarder ’s lifecycle method onReceive(); (5) this method
sends an explicit intent (L19 ) to the Leaker Activity; (6) this
intent causes the system to invoke Leaker ’s onCreate() method;
and (7) this method retrieves the intent from the system
(L25 ), extracts the data, and sends the data through SMS
(L28 ).

A static analyzer needs a model of the Android system
to track invocation of component lifecycle methods as illus-
trated in this example. Our model of the Android environ-
ment is inspired by FlowDroid [6, 17], which uses a“dummy-
Main” method to capture all possible sequences of lifecycle
method invocations as permitted by Android. Our model
also extends that of FlowDroid by capturing the control and
data dependencies among components. For instance, it is
able to find the inter-component control flows from Data-
Grabber.onCreate to Forwarder.onReceive (Event 3 ! 4).

However, we observe that FlowDroid is yet to find crit-
ical ICC data flows. As an example, it does not find the
data flows through the intents sent from DataGrabber to
Forwarder and from Forwarder to Leaker. DataGrabber
puts the sensitive information inside Intent i1 via putEx-
tra (which actually populates i1 ’s mExtras field) and sends
i1 to Forwarder. The Android system then acts as an inter-
mediary and dispatches i1 to Forwarder.onReceive as i2.

We have found no prior works that have a mechanism to
find the connection between i1 and i2. Furthermore, For-
warder creates a new Intent i3 and transfers the data from
i2 to i3. In fact, s2 equals to s1 that carries the sensitive in-
formation, which is now contained in i3. Finally, the secret
information is further forwarded to Leaker through intent
i3 which Leaker retrieves via getIntent() as i4. Mapping
back i4 to i3 is more complicated as it is not passed as an
explicit parameter to the callback method. Again, no prior
works can find the link between i3 and i4, without which,
one will have no chance of knowing that s3 (retrieved from
i4 ) equals to s1 and carries sensitive information, which is
sent out through SMS.
We observe that to capture this type of intricate informa-

tion flow, the model of the Android environment needs to
include both the control and the relevant data specialized
for Android (intent in this case). Moreover, the analyzer
must be able to conduct data-flow analysis across component
boundaries to identify this type of security problems that
require multiple components working together. Prior works
(e.g., FlowDroid and Epicc) have made important steps to-

wards this goal, but none has moved further enough. While
one could extend the prior works to address this limitation,
we use a di↵erent approach (outlined in Section 1) which we
describe in more details in the following sections.

3. THE AMANDROID APPROACH
Figure 2 illustrates the pipeline of Amandroid’s main steps:

(1) Amandroid converts an app’s Dalvik bytecode to an in-
termediate representation (IR) amiable to static analysis;
(2) it generates an environment model that emulates the in-
teractions of the Android System with the app to limit the
scope of the analysis for scalability; (3) Amandroid builds
an inter-component data flow graph (IDFG) of the whole
app. IDFG includes the control flow graph spanning over
all the reachable components of the app; it also tracks the
set of object creation sites that reach each program point
(thus, Amandroid knows the dynamic types of objects flow-
ing to any particular program point, and where they were
created and modified along the way); (4) it builds the data
dependence graph (DDG) on top of the IDFG, which im-
plies explicit information flow; and (5) Amandroid then can
be applied in various types of security analysis using the in-
formation presented in IDFG and DDG. For example, one
can use DDG to find whether there is any information leak-
age from a sensitive source to a critical sink by querying
whether there is a data dependence chain from source to
sink.

3.1 IR Translation
Amandroid decompresses the input app apk file and re-

trieves a dex file and covert it to an IR format for subsequent
analysis. Our dex2IR translator is a modification of the orig-
inal dexdump tool shipped with the Android platform tool
set; the C++ source of the original dexdump is available in
the Android build package, and we modified it so that it can
also produce the app representation in our IR format.

3.2 Environment Modeling
An Android app is not a closed system; the Android sys-

tem provides an environment in which the app runs. The
code that may execute during the lifetime of an app is not
all present in the app’s package. The Android system (which
includes the Android runtime) does a bulk of the work in ad-
dition to that by the app’s code. With the “sensitive-sms”
app example in Section 2, we demonstrated that a static
analyzer needs to model the Android system to analyze the



Figure 2: The Amandroid Analysis Pipeline

system-defined control flows in the app3. Our modeling of
the Android environment follows that of FlowDroid [6, 17]
with a few crucial extensions described below.

In Android, numerous types of events (e.g., system events,
UI events, etc.) can trigger callback methods defined in the
app. As an example, while an Activity A is running, if an-
other Activity B comes to the foreground, it is considered an
event. This event can trigger A.onPause, which is either de-
fined in the app’s code, or in the Android framework if the
developer did not override the default method. Figure 1b
depicts the life cycle of an Activity. There are seven impor-
tant life-cycle methods of an Activity: onCreate, onPause,
onResume, etc.; they each represent a state in the transition
diagram. Android documentation specifies other states such
as Activity running and Activity shut down.

Amandroid introduces component-level models instead of
FlowDroid’s whole app-level model. The environment of a
component C represents a main method, EC , which takes
as parameter an incoming intent i and invokes C’s life-cycle
methods (e.g., onCreate or onReceive) based on C’s type
(Activity, Service, Broadcast Receiver, etc.) and other call-
back methods (e.g., onLocationChanged) so that all possible
paths are included. This component-level model is more ef-
fective in capturing the impact of the Android system on
both the control and data of an app’s execution. The part
below the dotted line in Figure 1a highlights this idea: a
dedicated environment for each component invokes the set
of implemented callback methods; this is the control part
of modeling Android’s environment. In addition, the en-
vironment also keeps tracks of the intents received by the
component (e.g., Environment of Leaker remembers that p3
was sent to start Leaker) so that the intents could be made
available when necessary (e.g., to serve getIntent() in the
Leaker component); this is the data part of modeling An-
droid’s environment. EC also passes the intent parameter
when necessary for other relevant methods (e.g., onReceive).
Amandroid generates Ec automatically. First, it collects

basic information from the resource files in the apk and uses
this information to collect layout callback methods. It then
generates the body of Ec with lifecycle methods based on the
type of C. Finally, it collects other callback methods (e.g.,
onLocationChanged) in C (through a reachability analysis)
in an incremental fashion (following the FlowDroid [6] ap-
proach). All of these are done before performing the data
flow analysis as discussed in Section 3.3.

3.3 Inter-component Data Flow Graph (IDFG)
Determining object points-to information is a core under-

lying problem in almost all static analyses for Android app
security, such as finding information leaks, inferring ICC

3The alternative is to fully analyze the whole Android sys-
tem’s code, which is both expensive and unnecessary as also
observed by others [17, 23].

calls, identifying misuse of certain library functions, and
others. Instead of addressing each of these problems using
di↵erent specialized models and algorithms, it is advanta-
geous and more elegant to pre-calculate all object points-to
information at once, and use this as a general framework for
di↵erent types of further analysis.

Existing o↵-the-shelf static analysis tools such as Soot [32]
(used by FlowDroid [6, 17] and Epicc [25]) and Wala [16]
(used by CHEX [23]) have not provided capability of calcu-
lating all objects’ points-to information in a both flow and
context-sensitive way [4, 22].4 This is due to concerns about
computation cost. However, with the advancements in hard-
ware (e.g., many-core machines), it opens new possibilities
to perform a more precise analysis.

Thus, the core task of Amandroid’s analysis is aimed to
build a precise inter-component data flow graph (IDFG) of
the app; the flow-sensitive and context-sensitive data flow
analysis to calculate object points-to information is done at
the same time with building inter-procedural control flow
graph (ICFG). This is because in order for one to precisely
know the implementation method of a virtual method in-
vocation, one needs to know the receiver object’s dynamic
type; conversely, flow-sensitive data flow analysis requires
one to know how the program control flows. Thus, there is
a mutual dependency between the two analyses.

Such integrated control and data flow analyses approach
has been demonstrated to be both practical and e↵ective
for even analyzing temporal properties of concurrent Java
programs including the standard Java library codebase [10].
However, [10] does not keep track of method calling con-
text (typically termed monovariant calling context analysis
or 0-calling context [24]). We generalize the approach to
precisely track the last k calling contexts (polyvariant [24],
a.k.a. k-limiting where k is user-configurable and the addi-
tional calling context beyond k is monovariant).

Amandroid follows the classical static analysis approach [24]
customized to address the number of aforementioned chal-
lenges in analyzing Android apps. It computes points-to
facts for each statement. There are two sets of facts asso-
ciated with each statement: the set of facts entering into a
statement s is called the entry set of s (or just entry(s));
the set of facts exiting a statement s is called the exit set
of s (or just exit(s)). Statement s may change entry(s)
by killing stale facts (kill(s)) and/or generating new facts
(gen(s)). The gen and kill sets can be calculated using flow
functions that are based on s’ semantics. In general, the
flow equations have the following forms.

exit(s) = (entry(s) \ kill(s)) [ gen(s) (1)

Due to space constraints, the description of the basic IDFG
building process can be found in Appendix. Below we intro-

4More detailed comparison between Amandroid and Flow-
Droid can be found in Section 6.
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duce the notations in IDFG and use the example in Section 2
to explain its semantics. Figure 3 is the resulting IDFG of
the exmaple app, using DataGrabber as the entry point.

3.3.1 Notations
A points-to fact provides information about what objects

a variable (register in Dalvik), an object field, or an array
element may point to at a particular program point. Objects
are dynamically allocated in the Dalvik VM heap space at
object creation sites (through a“new”statement). In our IR,
each statement in the program is assigned a unique number
N (represented as LN). We use the term instance N to
denote the object instance created at statement N (note
that the statement gives the exact object runtime type).
A tuple-instance (e.g., (“key1”, 5)) denotes a key-value pair
in the fact sets. Amandroid keeps tracks of two kinds of
information:

• variable-fact: A points-to fact for a variable; it is denoted
as hv, li, where v is the variable (whose type is an object
reference type) and l is an object instance. For example,
in Figure 3 statement L6 generates a variable-fact hi1, 6i,
meaning that variable i1 points to instance 6.

• heap-fact: A points-to fact for an object field or an array
element. For example, statement L8 in Figure 3 gen-
erates a heap-fact h(6, mExtras), (“key1”, 5)i, meaning
that the field mExtras of instance 6 points to a key-value
pair (“key1”, 5)5.

Amandroid starts the IDFG building from the CFG of
the DataGrabber component’s environment method (the left
column of the leftmost dashed box in Figure 3). For brevity
only a subset of the nodes and facts are shown.

3.3.2 Modeling Library and Native Calls
Android has a large number of library API’s an app may

call into, some of which are implemented natively. Similarly,
an app developer may choose to natively implement some
functionality due to various reasons (e.g., performance). Aman-
droid does not analyze native code; thus, in order to enable
analysis of app making use of native code, we need to pro-
vide models for native methods that summarize how the
data flow facts that may be changed. For library APIs that
have well-understood simple semantics, one can summarize
them as flow functions (gen and kill). Moreover, providing
models for non-native library methods that are frequently
used are also useful to scale the analysis. This is in line
with how we model the Android environment described in
Section 3.2.

In general, Amandroid adopts the following strategy in
modeling Android library functions: (1) for library func-
tions that provide important information for static analysis
(e.g., intent manipulation functions), we manually build a
precise model for them based on the function’s implementa-
tion and/or documentation (each model simply consists of
5The mExtras field is an aggregate object that may store
multiple key-value pairs. We currently do not model such
aggregates and instead “flatten” all the elements in an ag-
gregate into singleton instances. This will create two possi-
ble interpretations of multiple facts regarding an aggregate
object: either they are di↵erent possibilities from di↵erent
program branches, or they are part of a single aggregate
in the same branch. Amandroid’s static analyzer conserva-
tively assumes both are possible to ensure soundness, but
this could lose some precision. Modeling aggregates is an
engineering work that we will address in future work.

custom gen and kill functions); and (2) for all other library
functions, we provide a uniform conservative model. The
conservative model essentially assumes that for every object
parameter, any of its fields may be modified and becomes
unknown; that is, the field can point to a fresh object, or
any existing object reachable from the method parameters
(and static fields) that is type compatible with the method’s
return type. If the function also returns an object, the re-
turned object is also considered “unknown.”

In Figure 3, line L5 in DataGrabber generates a variable-
fact hs1, 5i, indicating that an object is returned from the
API call and assigned to s1; we use getSensitiveData in this
example as a generic name for any methods that returns an
object with sensitive information. At Line L8 the sensitive
data is inserted as a key-value pair (“key1”, s1) into intent
i1’s mExtras field. The putExtra is an Android system API
and we model it so that we can keep track of the data flow
through the call. In this case, the model of the API will as-
sign the key-value pair to the mExtras field of intent i1. The
generated fact at Line L8 is then h(6, mExtras), (“key1”, 5)i
following our notation for a field-fact, where 6 represents the
intent i1 created at Line L6. Note that instance 5 represents
the String object returned from getSensitiveData().

3.3.3 Handling ICC
Section 2 illustrates that malicious apps can easily manip-

ulate Android’s inter-component communication (ICC) to
stealthily achieve undesired e↵ects. To identify such secu-
rity problems, a static analyzer needs to be aware of control
and data flows across component boundaries. Handling ICC
requires a number of steps: (1) solve for ICC call parame-
ters, (2) find the target component(s), and (3) track data
flow from the ICC caller to callee.

Prior work [25] has investigated how to infer Android ICC
API call parameters (Step 1). Amandroid not only infers
such ICC API call parameters using the points-to facts com-
puted, but also uses such information to resolve ICC call tar-
gets (Step 2) and link the source with the possible targets in
its dataflow analysis (Step 3). This will enable us to detect
the security problems like that illustrated in Section 2.

The destination of an ICC can be either explicitly or im-
plicitly specified in the outgoing intent. The common way
of creating an explicit intent is by adding the destination
component’s name using Android APIs such as setClass (L7
in Figure 3) or a special constructor for Intent (L15 ). An
implicit intent does not include the name of a specific desti-
nation component, but instead requests a general action to
perform, and the System finds a capable component (from
the same app or another) which can fulfill the request. Some
fields of an Intent object are used in this matching: mAc-
tion (String), mCategories (set of String), mData (Uri), and
mType (String). These intent fields can be manipulated by
invoking certain Android APIs. Through proper modeling
of these API functions (Section 3.3.2), Amandroid can de-
rive possible (String) values of the relevant fields of an Intent
object, upon which the Android system bases its decision on
ICC destinations.

For instance, Amandroid can derive that at L9 in Fig-
ure 3, the intent parameter i1 ’s field mComponentName6 is

6For the ease of exposition, in this article we represent the
mComponent field of an intent by its name string. However,
we handle this field accurately in the Amandroid implemen-
tation.
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Figure 3: An excerpt from the IDFG of the app “sensitive-sms.”

“Forwarder.” This fact comes from the modeling of the API
function setClass called at L7, which generates a field-fact
h(6, mComponentName), ”Forwarder”i, where 6 represents
Intent i1 which was created at L6.

For an implicit intent, the Android system finds the desti-
nation depending on the intent fields as well as the manifests
of all the apps which specify intent filters for a component.
An intent filter is an XML expression involving the action
tag, category tag, and data tag (which includes both uri and
type). The Android system determines the destination of
an implicit intent by applying a set of rules [2] matching the
relevant intent fields and the intent filter specification for
every component on the system. Amandroid implements all
those matching rules, using the static analysis results that
show the possible string values of the relevant intent ob-
ject fields. It runs a precise action test, category test, and
data test (having both Uri and type) to find the destina-
tion component(s). Our static analysis can readily handle
the String literals. For complicated String operations (e.g.,
concatenation in a while loop), if Amandroid cannot infer
the exact string value, it reports it as any string, ensuring
the soundness of our analysis. We are able to run the Uri
test matching di↵erent parts of the Uri (e.g., scheme, path,
host, port) between the intent and an intent filter. Further-
more, Amandroid is also able to find the specifications of
dynamically registered Broadcast Receivers, if any.

3.4 Building the Data Dependence Graph
The data dependence graph (DDG) is derived from the

IDFG. The DDG reflects how instance and variable defini-
tions flow through the program. With the help of DDG,
we can argue which part(s) of the program a particular
program-point depends on with respect to these two types
of flows. As a matter of fact, the DDG is a directional graph
like the ICFG. The basic DDG’s node set is the same as the
ICFG’s, but their sets of edges are di↵erent. In fact, DDG
has two kinds of edges: (i) object dependence edge – an edge
linking the use site of an instance to the creation site of the
instance, and (ii) variable def-use edge – an edge which links
a use site of a variable to the def-site of the variable.
Since object flow along ICC edges is already captured in

IDFG, the constructed DDG automatically captures data
dependencies across component boundaries. As an example,
in Figure 3, the sendTextMessage(..., s3) in Leaker uses s3
while the entry of this statement has a fact hs3, 5i which
implies that Instance 5 is used in this statement. So, there is

an object dependence edge from the corresponding CallNode
(L28 ) in the Leaker component to the creation site (L5 ) in
the DataGrabber component.

3.5 Using Amandroid for Security Analyses
Amandroid provides an abstraction of the app’s behavior

in the forms of IDFG and DDG. We now discuss how they
can be easily used for a number of useful security analyses.

3.5.1 Data Leak Detection
One important problem in app vetting is to find whether

an app may leak any sensitive data. Examples of sensitive
data include user-login credentials (e.g., password), location
information, and so on. This can be performed through
standard data dependence analysis using the DDG. Given
a source and a sink, one can find whether there is a path from
source to sink in the DDG. All that is needed for this anal-
ysis is to specify the source and the sink, which can be any
node depending on the specific problem. For instance, prior
research [7, 17] has documented a list of security-critical
source and sink APIs, which can be used here. One could
also customize the definition of the source and sink for the
specific problem at hand. DDG can only capture explicit in-
formation leaks; for information leaks through controls (e.g.,
leaking conditionals through the branches) one would need
to build a control dependence graph, which can be obtained
from the ICFG through the standard process [5].

Compared with prior works on detecting information leaks
on Android apps, Amandroid can perform a more compre-
hensive analysis since it captures control and data flows
across the component boundaries through ICCs, so that se-
curity problems like the one shown in Figure 1a can be cap-
tured.

3.5.2 Data Injection Detection
An app can have a vulnerability which allows an attacker

to inject data into some internal data structures, leading
to security problems. Recently, researchers [23] identified a
subclass of this vulnerability called intent injection. The at-
tacker can send an ill-crafted intent to a public component
of a vulnerable app, which retrieves data from the incoming
intent and uses it for security-sensitive operations. For in-
stance, the app’s logic can be such that the incoming intent
determines the destination of a critical data flow — the url
of a backup server, the name of a file, the destination com-
ponent of an ICC call, phone number of an outgoing SMS,



or others. As a result, the attacker will be able to control
the destination, which can lead to serious security problems.

Amandroid can detect this vulnerability using the DDG,
by defining the source as the possible entry point of attacker-
controlled data (e.g., a public-facing interface), and the sink
being the critical parameters of the security-sensitive opera-
tions. If a data-dependency path exists between the source
and the sink, the attacker can potentially manipulate the
parameters of the security-sensitive operations.

As an example, recent research [34] found (manually) the
next intent vulnerability of popular apps such as Dropbox,
which is a special intent injection problem involving ICC. As
Amandroid is able to track data dependencies over the ICC
links, our aforementioned analysis technique is able to find
the “next intent” problems in an automated fashion. In fact,
Amandroid was able to rediscover this issue in the Dropbox
app.

3.5.3 Detecting Misuse of an API
Another critical part of security vetting is to find if the de-

veloper (intentionally or unintentionally) has used a library
API in an improper way, which may lead to security prob-
lems. Recent research has applied static analysis to identify
misuse of Crypto APIs [11] and SSL APIs [14]. The main
idea is to detect if the app satisfies a set of rules on proper
use of the APIs. For example, if the parameters for call-
ing the encryption method have certain values the cipher
will run in the insecure ECB mode. Amandroid can verify
these rules by checking the possible values of the parameter
objects in a relevant API call by querying the IDFG.

4. EXPERIMENTATION AND EVALUATION
We extensively experimented with Amandroid in multiple

types of security analyses. We used several sets of apps: 753
popular apps from Google Play (the same dataset used in the
Epicc work [25] and made available by the authors), a sample
malware set (containing 100 apps) from Arbor Networks,
and two benchmarks (hand-crafted apps by other researchers
and us). For brevity, we call the first two data sets GPlay
and MAL, respectively.

Our security analysis found multiple crucial problems in
the apps, which we report in this section. Most of our results
were never reported before by other researchers in the liter-
ature; some of the problems detected by Amandroid are in
the same category (but di↵erent instances) of the previously
reported ones (e.g., password leak), while others are com-
pletely new categories (e.g., OAuth token leak). As Aman-
droid is the only tool which tracks data flows through ICC,
Amandroid is able to find sophisticated data leak and data
injection problems as illustrated by the results.

4.1 Performance and Scalability
We perform our experiments on a machine with 2 ⇥ 2.26

GHz Quad-Core Xeon and 32GB of RAM.
Amandroid gives options for multiple precision levels. For

instance, the context length k serves as a parameter to set
the trade-o↵ between precision and performance. In our
experimentation, we always set k = 1, meaning the static
analyzer tracks up to one calling context. Amandroid also
allows the user to define the scope of the analysis by exclud-
ing certain third-party libraries, and in our experiment we
excluded a few popular third-party libraries since they are
huge in size and could be separately analyzed, summarized,
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Figure 4: Time to Build IDFG

and reused by the analysis of all the apps that include them.
Currently, we use the same modeling techniques as explained
in Section 3.3.2 for the excluded third-party libraries.

The most computational intensive step in Amandroid is
building the IDFG. Once the IDFG is built, the running
times of the subsequent analyses such as building DDG and
running the specialized analyses using IDFG and DDG are
negligible in comparison. Figure 4 presents the time taken
by Amandroid to construct IDFG for 853 apps. This mea-
surement is done on the data-sets GPlay and MAL which
are all real-world apps. During the experiment, we limited
the processing time of each component of an app to 10 min-
utes; Amandroid raised this timeout on 86 of the 853 apps.
For each app, which consists of multiple components, the
median time is 29 seconds; minimum is 2 seconds; and max-
imum is 113 minutes and 29 seconds. The scatter plot shows
both the running time and the size of the app (in number of
byte code instructions).

4.2 Application to Security Analysis
We report experimentation results addressing data leak,

data injection, and misuse of APIs (as discussed in Sec-
tion 3.5). All experiments are done using the GPlay and
MAL datasets (real-world apps).

4.2.1 Data Leak
Password Leaks: We used the following policy to vet apps
for properly handling user passwords: “password should not
be saved in the device (not even when encrypted) and should
be transferred to a remote server only via HTTPS.” (similar
guidelines can be found in, e.g., [13]). Amandroid can be
readily used to verify whether the input app obeys such a
policy. The only “to-do” task is to identify which variables
in the app’s code corresponds to a password object (source),
and to define the potential leaking sinks.

We find the TextView item corresponding to a password
(when the inputType attribute’s value is textPassword) in
an app’s layout file and identify its unique ID. Amandroid
then looks for the usage of this particular ID in method call
Context.getViewbyId(x), which is done through a standard
reaching-definition analysis on the intra-procedural control-
flow graph7; this method returns an EditText object y, and
y.getText() gives the password object. We can then define
7If the app’s developer obfuscates the ID through, e.g.,
mathematical manipulation, our reaching-definition analy-
sis will not be able to return concrete values for the view



this object as the source. We prepare the list of sink APIs
by considering the relevant I/O operations (e.g., Log.i(key,
value), and URL.openconnection()). The rest of the analysis
is the straightforward application of DDG as explained in
Section 3.5.

We found several examples of password leakage. Table 1
shows part of the results. We observe a few interesting pat-
terns: (a) the password is logged in clear text (Case 1 in
Table 1); (b) the password is reaching a Network API over
HTTP channel (Entry 2 in Table 1); and (c) the password
is saved in SharedPreference (Entry 3 in Table 1). Case
2 stems from a third-party library for Twitter. The DDG
and IDFG shows that the app sends the user’s password to
http://api.twitter.com/1 (an HTTP connection). Inter-
estingly, one can see that the URL is not currently working
and only responds with a message “SSL is required.”

Table 1: Password Leakage Case Study

App name (app source) App behavior

Case 1: com.datpi↵.mobile.apk Get user password, encode
(GPlay) it, then write it into log.
Case 2: com.toystorymusic- Send password to server
.musicapp.* (MAL) via http.
Case 3: com.snappii.angel invest- Write user password into
ing news v10.apk (GPlay) SharedPreference.

OAuth Token Leaks: OAuth 2.0 [21] is a popular authen-
tication protocol which is frequently used for single-sign-on
(SSO), social sharing, etc. Typically, Google, Facebook, and
other popular services are the Identity Provider (IdP). Thus,
if the OAuth token is stolen, the user’s corresponding IdP
account can be compromised. Similar to password track-
ing, Amandroid can be used to check whether the input app
obeys the OAuth token protection policy. The source of
the potential leak is determined using a simple strategy of
tracking the string literal “access-token” and marking the
related object creation statements as the source. The sinks
are the same as in the password leak detection. We found
several potential OAuth token leakage cases, some of which
are shown in Table 2. We observe a couple of interesting
patterns: (a) The implicit intent carrying the token can pos-
sibly reach a malicious app. (e.g., Case 1 in Table 2), and
(b) A malicious app having Log-read permission can grab
the OAuth token (e.g., Case 1 and Case 2 in Table 2). Note
that the above type of token leakage is very di↵erent from
the explicit token discoveries reported in a recent work [33].

Table 2: OAuth Token Leakage Case Study

App name (app source) App behavior

Case 1: com.skout.android.apk Send OAuth token via implicit
(GPlay) ICC; also write it to Log.i().
Case 2: com.keek.apk Write OAuth token into log
(GPlay) using Log.d().

4.2.2 Data Injection
We found a variety of intent injection problem in our

experiment; Table 3 shows part of the results. We ob-
serve a couple interesting patterns: (a) The attacker con-
trols the “url” string in the TwitterLoginActivity. (Case 1),
and (b) The destination of an ICC depends on an incoming
intent controlled by the attacker (Case 2).

ID. In this case we will conservatively report a possible ma-
licious app, since it is extremely unlikely a benign app will
perform such manipulations on a view ID.

Table 3: Intent Injection Case Study

App name (app source) App behavior

Case 1: com.fcbh.dbp.Bible- TwitterLoginActivity retrieves
SocietyOfPhilippines.apk the “url” from incoming intent
(GPlay) and sends it to another Activity
Case 2: com.kamagames. Start an activity by using the
notepad.apk (GPlay) mData of the incoming intent

Table 4: Crypto API Usage Case Study

App name (app source) App behavior

Case 1: hu.sanomabp.citromail- Encrypt OAuth token using
.apk (GPlay) AES ECB mode, then store

it in SharedPreference.
Case 2: diesel.peko.ninkyodobro- Encrypt the password using
wser.apk (GPlay) AES ECB mode.

4.2.3 API Misuse
We found several apps that violate the rule on not using

ECB mode for encryption. Table 4 shows part of the results.
The apps encrypt the user credential using the AES cipher
in ECB mode.

4.2.4 What it Takes to Build a New Analysis
The advantage of Amandroid’s approach is that the gen-

eral framework provides a means for building a variety of
further security analyses in a straightforward and easy way.
Each special analysis built on top of Amandroid involves
developing a “plugin” that leverages the IDFG and DDG
from Amandroid’s analysis. Moreover, once the core analy-
sis produces IDFG and DDG for an app, they can be stored
and reused in multiple security analyses. We present the
summary of the plugins used in the above applications in
Table 5, which shows the sizes of the plugin in Scala LOC,
as well as the average running time of each plugin. This can
be compared with the size of the core engine and its average
running time, shown in the last row of the table.

Table 5: Code Size and Running Time (Plugins and Core)

Name
Approx. Size

Avg. Time
(Scala LOC)

Tracking password plugin 120 50ms
Tracking OAuth Token plugin 120 50ms
Generic Data Leak plugin 60 300ms
Intent Injection plugin 70 50ms
Crypto API check plugin 140 10ms
Core Framework 30,000 60s

4.3 Comparison with Existing Tools
We use three benchmark testsuites8 to compare Aman-

droid with two other well-known static analysis tools for
Android: FlowDroid [6, 17] and Epicc [25]. The benchmark
testsuites consist of hand-crafted apps designed to test cer-
tain analysis features. Since those apps are hand-crafted,
the ground truth is known, allowing for computing metrics
such as precisions and recalls. However, one needs to bear
in mind that these metrics are not representative of the real

8Using real-world apps for comparison will be di�cult since
there is no easy way to determine the ground truth. For ex-
ample, we have used the GPlay dataset to compare Aman-
droid and Epicc and found much less reachable ICC call
sites than Epicc. This could indicate that Amandroid is
more precise than Epicc (both tools are sound and thus will
not miss a path); however, without ground truth in the apps
it is impossible to test this hypothesis.



performance of the tool on real-world apps. They can only
be used for comparison purposes.

The first benchmark is DroidBench, a benchmark testsuite
provided by the FlowDroid team that consists of Android
apps for evaluating information-flow analysis. The version
we used contains 39 apps, including test cases for static anal-
ysis challenges as well as Android-specific challenges. As
DroidBench does not test any ICC-related capability, we
added another testsuite called ICC-Bench which contains
16 apps for testing various ICC reasoning capabilities. Each
test app has two components where one component sends an
Intent to the other one. The sender component involves a
source API while the receiver contains a sink API. The test
apps are categorized in two parts: Part A involves various
types of intent handling: explicit intent target finding, im-
plicit intent target finding (via matching action, categories,
data and type), and dynamically registered component han-
dling, etc.; Part B focuses on the accuracy of the analysis
by including a variety of scenarios where certain informa-
tion flow paths do or do not exist. The list of ICC-Bench
apps can be found in the 1st column of Table 8. The third
testsuite consists of four specially designed test apps (each
with a single component) to test the data injection detection
capability. While the latter two testsuites were designed by
us and not a third party, the apps in these testsuites are not
crafted to favor a particular tool. They represent common
scenarios one will find when reasoning about the relevent se-
curity issues. We plan to make both these testsuites publicly
available.

4.3.1 ICC Test
Table 6 summarizes the result of ICC testing using Part A

of ICC-Bench. As discussed in Section 3.3.3, to completely
handle ICC an analysis tool needs to carry out three steps.
Amandroid is able to successfully pass all the tests for the
three steps. Epicc only addresses Step 1 thus did not pass
the tests on Step 2 and 3 (shown as “N/A” in the table).
FlowDroid does not address ICC thus did not pass any of
the tests. For Step 1, Amandroid is able to handle all types
of intents: explicit, implicit, and mixed (either explicit or
implicit depending on execution paths). As discussed in Sec-
tion 3.3.3, an implicit intent can behave in multiple ways de-
pending on which field (mAction, mCategories, mData (i.e.,
Uri9), or mType) is used. Amandroid can track each such
field and hence can handle all types of implicit ICC. Epicc is
the only existing tool which attempts to solve ICC parame-
ters. However, Epicc does not handle mData or mType field
of an intent, and thus failed those tests.

4.3.2 Data Leak
We compare the e↵ectiveness of Amandroid’s data leak de-
tection with the other tools on two benchmarks: DroidBench
and ICC-Bench. The tool is run on each test app to see if
the tool can report the correct data leak paths. The results
are shown in terms of True Positive (O), False Positive (*),
and False Negative (X), if any. If a test app contains mul-
tiple data leak paths, the result is shown for each of them.
Only FlowDroid and Amandroid can perform static taint
analysis to find those leak paths; Epicc only outputs infor-

9Uri consists of multiple parts, such as scheme, host, port,
path; a tool must be able to determine the values of each
part to pass the test.

Table 7: DroidBench Test Results. O = True Positive, * =
False Positive, X = False Negative.

App Name FlowDroid Amandroid Epicc

Arrays and Lists
ArrayAccess1 * *

N/AArrayAccess2 * *
ListAccess1 * *

Callbacks
AnonymousClass1 O O

N/A

Button1 O O
Button2 OOO* OOO
LocationLeak1 OO OO
LocationLeak2 OO OO
MethodOverride1 O O*

Field and Object Sensitivity
FieldSensitivity1

N/A

FieldSensitivity2
FieldSensitivity3 O O
FieldSensitivity4
InheritedObjects1 O O
ObjectSensitivity1
ObjectSensitivity2
FieldSensitivity1

Inter-App Communication
IntentSink1 X O

N/AIntentSink2 O O
ActivityCommunication1 O X

Lifecycle
BroadcastReceiverLifecycle1 O O

N/A

ActivityLifecycle1 O O
ActivityLifecycle2 O O
ActivityLifecycle3 O O
ActivityLifecycle4 O O
ServiceLifecycle1 O O

General Java
Loop1 O O

N/A
Loop2 O O
SourceCodeSpecific1 O O
StaticInitialization1 X O
UnreachableCode

Miscellaneous Android-Specific
PrivateDataLeak1 O O

N/A
PrivateDataLeak2 O O
DirectLeak1 O O
InactiveActivity
LogNoLeak

Implicit Flows
ImplicitFlow1 XX XX

N/A
ImplicitFlow2 XX XX
ImplicitFlow3 XX XX
ImplicitFlow4 XX XX

Sum, Precision and Recall — DroidBench
O, higher is better 26 27

N/A

*, lower is better 4 4
X, lower is better 10 9
Precision p = O/(O + *) 86% 87%
Recall r = O/(O + X) 72% 75%
F-measure 2pr/(p + r) 0.78 0.81

mation based on ICC call parameters and thus cannot find
the actual leak paths.

The detailed comparison of the performance of FlowDroid
and Amandroid on DroidBench and ICC-Bench is available
in Table 7 and 8. Not surprisingly, Amandroid outperforms
FlowDroid on the ICC-Bench since FlowDroid does not han-
dle ICC. The two perform similarly on the DroidBench test
suite.

4.3.3 Data Injection
Table 9 compares Amandroid, FlowDroid and Epicc in the

context of data injection detection performance, using the
third testsuite. Since this datasuite only consists of apps
with a single component, FlowDroid is able to handle most



Table 6: ICC Test Result

Tools
Step 1: Solve ICC call parameters

Step 2: Step 3:
Explicit Implicit ICC

Mixed Find the target component(s) Track the ICC data flow
ICC mAction mCategories mData mType

Epicc X X X 7 7 X N/A N/A
Amandroid X X X X X X X X
FlowdDroid N/A N/A N/A

Table 8: Results on ICC-Bench. O = True Positive, * =
False Positive, X = False Negative.

App Name FlowDroid Amandroid Epicc

Part A — Testing ICC Addressing
ICC Explicit1 *X O

N/A

ICC Implicit Action OX OO
ICC Implicit Category OX OO
ICC Implicit Data1 OX OO
ICC Implicit Data2 OX OO
ICC Implicit Mix1 OXX OOO
ICC Implicit Mix2 OX OO
ICC DynRegisteredReceiver1 OX OO

Part B — Testing ICC Data Flow Tracking
ICC Explicit NoSrc NoSink

N/A

ICC Explicit NoSrc Sink
ICC Explicit Src NoSink *
ICC Explicit Src Sink *X O
ICC Implicit NoSrc NoSink
ICC Implicit NoSrc Sink
ICC Implicit Src NoSink O O
ICC Implicit Src Sink OX OO

Sum, Precision and Recall — ICC-Bench
O, higher is better 9 20

N/A

*, lower is better 3 0
X, lower is better 11 0
Precision p = O/(O + *) 75% 100%
Recall r = O/(O + X) 45% 100%
F-measure 2pr/(p + r) 0.56 1.00

Table 9: Data Injection Detection Comparison. FP = False
Positive, FN = False Negative.

App Feature FlowDroid Epicc Amandroid

Public Comp
data reach sink X X X
not reach sink X FP X

Private Comp
data reach sink FP X X
not reach sink X X X

of them, execpt for one case where it raised a false alarm due
to not being aware of a component’s exported status. Al-
though not included in the testsuite, FlowDroid would have
False Negative (FN) when the app involves ICC (e.g., “next
intent” vulnerability [34]). On the other hand, Epicc takes a
simple worst-case approach to detect a data injection prob-
lem, which assumes that any public component can have
such vulnerability. However, this conservative approach will
cause false alarms where there is no data flow path from the
public component to the sensitive operation sink. Aman-
droid can correctly handle all the cases.

5. DISCUSSIONS
Amandroid has limited capability to handle exceptions.

If an app has a security issue where the code of an excep-
tion handler plays a role, Amandroid may not detect it. We
will address this limitation in future work. Amandroid does
not currently handle reflections and concurrency. Adding
support for reflections is similar to handling ICC in Aman-
droid, which already has some preliminary string analysis
capability.

An app may have multiple components and they may
run concurrently. There could be security problems that
only manifest when multiple components interleave in cer-
tain ways. Handling concurrency in a general way in static
analysis is nontrivial; like in other prior works we leave this
for future research. For example, we could follow the ap-
proaches that have been developed from prior research [10].

Amandroid’s data and control flow analysis depends on
the faithfulness of the models, including the models of the
Android environment and its APIs. Due to the size of the
library, it still remains a challenge to develop a precise and
sound model for every library API.

6. RELATED WORK
There has been a long line of works on applying static

analysis for Android security problems [6, 8, 11, 14, 17, 20,
23, 25]. Below we describe a few works that are most closely
related to ours.

The design of Amandroid leverages a number of approaches
from FlowDroid [6, 17] (e.g., callback collection algorithm
during environment generation), but the two also have a
few important di↵erences. FlowDroid does not handle ICC
and as such cannot address security issues involving intent
passing among multiple components. FlowDroid builds a
call graph based on Spark/Soot [32], which conducts a flow-
insensitive points-to analysis. FlowDroid then conducts a
taint and on-demand alias analysis based on the above call
graph, using IFDS [28, 29] which is flow- and context-sensitive.
The flow-insensitivity in the call graph construction may in-
troduce spurious call edges (false positives), which could im-
pact the analysis precision of the subsequent IFDS analysis.
Amandroid computes the call graph at the same time as
the dataflow analysis by computing the flow- and context-
sensitive points-to facts; thus its callgraph is more precise,
which could lead to fewer false positives in the final anal-
ysis results. Moreover, FlowDroid does not calculate alias
or points-to information for all objects in a both context-
and flow-sensitive way. This is a design decision from com-
puting cost concerns [17]. Amandroid calculates all objects’
points-to information in a both context- and flow-sensitive
way, with reasonable computing cost (ref. Section 4.1).
This enables us to build the generic framework supporting
multiple security analyses.

Epicc [25] computes Android ICC call parameters using
the same IDE framework as FlowDroid, by modeling the
intent data structure explicitly in the flow functions. To
the best of our knowledge, Epicc does not use the ICC pa-
rameter analysis result to resolve the ICC call targets in
the general case, and has not used the result to perform
inter-component dataflow analysis. Amandroid’s approach
to deriving ICC parameters is to simply use the flow and
context-sensitive points-to information (including that for
string objects) already computed in the IDFG, without the
need for a separate data flow analysis just for ICC. Aman-



droid also uses the ICC call parameter information to link
ICC call sites to call targets, resulting in an IDFG that in-
cludes data flow paths both within and across components.

Lu et al. [23] uses a static-analysis scheme called CHEX
to detect component hijacking problem in Android, which is
reduced to finding information flows. CHEX first constructs
app-splits, each of which is a code segment reachable from
an entry point. It then computes the data-flow summary for
each split using Wala [16]. The split summaries are linked
in all permutations that do not violate the Android sys-
tem call sequences and could result in transitive information
flow. Amandroid computes information flow in a di↵erent
way – through the usage of an environment method for each
component that calls the relevant callbacks in the right or-
der (per Android system specification), and by building the
IDFG and DDG for the complete app. CHEX does not have
the provision to track data flow through the ICC channel,
which Amandroid does.

Chin et al. [8] first systematically studied the attack sur-
face related to ICC. In particular, they identified problems
such as unauthorized intent receipt and intent spoofing. They
also developed a static analysis tool which can raise warn-
ings for the above problems in an over-conservative manner.
ComDroid performs flow-sensitive, intraprocedural static anal-
ysis, and the paper states that there is a limited interproce-
dural analysis that“follows method invocations to a depth of
one method call.” Amandroid performs a full-fledged inter-
procedural data-flow analysis in a flow- and context-sensitive
way, and also tracks the data flows over the ICC channels.
While we would like to conduct comparison study between
ComDroid and Amandroid, the link to the ComDroid tool
(http://www.comdroid.org) is not working. We contacted
the authors for obtaining a copy of the tool and dataset used
for evaluation, but have yet to receive the information.

There has been a large body of work reporting Android
app security issues [36, 37], some of which use static analysis
techniques [11, 14, 18, 19]. Those works focus on finding spe-
cific security problems, and the static analyses used do not
seem to address some key issues such as the inter-component
nature of Android app’s execution and the precise modeling
of Android’s callback sequences. In contrast, Amandroid is
a precise and general inter-component static analysis frame-
work which can address a large range of security issues in
Android apps.

Multiple prior works [9, 26, 35] investigated the root se-
curity problems in the Android system and proposed aug-
mented infrastructures to enforce the given security policy.
Recently, SEAndroid [30] has been proposed which enforces
Mandatory Access Control (MAC) both in the kernel layer
and in the middleware. This system provides a better mech-
anism for sand-boxing the apps. However, MAC will not
stop the security problems which happen within an app or
through the legitimate ICC channels. In this paper, we as-
sume the sand-boxing (and isolation) of apps by the Android
system is not compromised; thus, our approach is comple-
mentary to those prior works.

TaintDroid [12] is a dynamic (runtime) taint-tracking and
analysis system to find potential misuse of the user’s pri-
vate information. All dynamic analyses are subject to eva-
sion attacks. For example, researchers have shown [27] that
Google’s Bouncer [3] can be fingerprinted and hence evaded
by a well-crafted app. On the other hand, static analysis
investigates the code of the app (along with the app’s man-

ifest, etc.), which determines the runtime behaviors of the
app; this makes it attractive for security vetting. Recently
Sounthiraraj et al. [31] showed that static and dynamic anal-
ysis can be combined to achieve more e↵ective detection/-
confirmation of security problems. Our approach provides a
precise and general static analysis framework that can com-
plement dynamic analyses.

7. CONCLUSION
We presented Amandroid – a general static analysis frame-

work for security analysis of Android applications. Aman-
droid can precisely track the control and data flow of an app
across multiple components, and can compute an abstrac-
tion of the app’s behavior in the forms of an inter-component
data-flow graph and data dependence graph. As a general
framework, Amandroid can be easily extended to achieve
a number of specialized security analyses. Our experiment
results showed that Amandroid scales well and can be read-
ily applied to e↵ectively address those specialized security
problems, and out-performs existing static analysis tools for
Android apps.
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9. APPENDIX
The Basic IDFG Building Process: A static analyzer
simulates the program and keeps track of the fact sets, until
a fixed point is reached. The convergence to a fixed point
(analysis termination) is guaranteed as long as the flow equa-
tions are monotone, and the number of facts is finite, which
hold for Amandroid’s analysis. For a given app, it contains



Figure 5: Building the IDFG for foo: The intra-procedural CFG of foo is extended to a callee, bar.

a finite number of object creation sites and variables/fields
(and as typically done, elements of an array are summarized
as one); moreover, we keep tracks of calling contexts up to
a finite number k.

Amandroid builds the IDFG by flowing the points-to facts
from the program’s entry points. Here the program is the
IR of the app’s dex code augmented with the environment
methods as discussed in Section 3.2. Unlike Java applica-
tions, there is no “main” method in an Android app; ev-
ery component could be the starting point of an app. Our
component-based environment model captures the full life
cycle of a component and all of its possible execution paths,
including those due to interacting with other components.
Thus, if we assume one particular execution path starts from
component C, we can use C’s environment method EC as
the program’s entry point. To include all possible execu-
tion paths from all possible components, we do this for ev-
ery component in the app, yielding multiple IDFGs. For-
mally, let C be a component, the IDFG from C is denoted
IDFG(EC) where EC is the environment method of C, and
is a tuple defined as the following.

IDFG(EC) ⌘ ((N,E), {entry(n)| n 2 N}) ,
whereN and E are the nodes and edges of the inter-procedural
control flow graph starting from EC (denoted ICFG(EC)).
entry(n) is the entry set of the statement associated with
node n. Each IDFG(EC) captures the execution that starts
from component C, and may involve other components due
to ICC. Each statement node is annotated with the state-
ment entry set (the exit set is not shown for presentation
sake). In this example, Amandroid starts building the IDFG
from the entry point method foo with an empty fact set.
Amandroid then simulates the program statically based on
each statement’s semantics and transforms the fact sets along
the way based on the flow equation (1).

At a control-flow join point, the exit fact sets from all in-
coming edges are unioned (e.g., at L7 ); facts such as hv2, 2i
and hv2, 5i coming from the di↵erent branches accumulate
in entry(7). Similarly, one can compute entry(8). At this
point, Amandroid needs to resolve the target for L8 ’s virtual
method invocation with static type A0. The first argument
of the call instruction, v2, is the receiver object. Since we
now have calculated the possible points-to values of v2 —
instance 2 or instance 5, we can resolve the possible call tar-
gets precisely: A1.bar for instance 2 and A2.bar for instance
5 (because both A1 and A2 override A0.bar). This shows
the advantage of doing a precise points-to analysis concur-

rently with ICFG building — not only can we have more
precise information on the call targets, but also it allows us
to flow more accurate facts to the di↵erent call targets. All
of these increase the precision and can potentially reduce
the number of false alarms in the analysis results.

As shown in Figure 5, a call statement contributes a pair of
CallNode and ReturnNode to the ICFG. The CallNode con-
nects to the callee’s EntryNode while the callee’s ExitNode
connects to the ReturnNode. In transferring facts between
the caller and the callee, the variable-facts need to be remapped
to the formal parameters of the callee (e.g., v2 in the caller
maps to v4 in the callee). This should be restored when the
control returns to the caller. Only heap-facts reachable from
the call parameters are passed to the callee. The unreachable
heap-facts as well as unrelated variable-facts are transferred
to the ReturnNode directly to improve e�ciency. In the ex-
ample of L8 ’s method invocation, there is one variable-fact
hv9, 6i which is unrelated to both arguments v2 and v3. The
flow of such fact (which is unrelated to any callee) is rep-
resented as a double-head arrow from the CallNode to the
ReturnNode. Similarly, there can be some facts at the callee
side that are unrelated to the caller (e.g., callee’s local vari-
ables and temporary objects), and we filter them out at the
callee’s ExitNode to improve e�ciency.

Consider the dataflow analysis for A1.bar or A2.bar, which
is a callee for L8 ’s method invocation. Amandroid tracks the
entry of each statement of A1.bar (or A2.bar). We observe
that entry(Return 8 ) contains heap-facts which show that
field f2 of Instance 2 points to the String “abc”. This is the
e↵ect of L10. It is interesting to see that this is not true for
the same field (i.e., f2 ) of Instance 5 because no assignment
like L10 happens inside A2.bar.

Now, we can get entry(9), and continue to process the
next call similarly. The process is similar to what we did
for L8, except that we have to handle the possibility of a
null receiver (because there is no fact associated with v2.f1
for hv2, 5i). For a virtual method statement, if the facts
show that the receiver variable maybe null , then we do not
process this particular instance; instead, we only propagate
the non-null receiver instances (if any) to the callee and flag
the call site as a possible runtime error.


