
1

Amandroid: A Precise and General Inter-component Data
Flow Analysis Framework for Security Ve�ing of Android
Apps

FENGGUOWEI, University of South Florida

SANKARDAS ROY, Bowling Green State University

XINMING OU, University of South Florida

ROBBY, Kansas State University

We present a new approach to static analysis for security vetting of Android apps, and a general framework

called Amandroid. Amandroid determines points-to information for all objects in an Android app component in

a �ow and context-sensitive (user-con�gurable) way, and performs data �ow and data dependence analysis for

the component. Amandroid also tracks inter-component communication activities. It can stitch the component-

level information into the app-level information to perform intra-app or inter-app analysis. In this paper, (a) we

show that the aforementioned type of comprehensive app analysis is completely feasible in terms of computing

resources with modern hardware, (b) we demonstrate that one can easily leverage the results from this general

analysis to build various types of specialized security analyses – in many cases the amount of additional coding

needed is around 100 lines of code, and (c) the result of those specialized analyses leveraging Amandroid is

at least on par and often exceeds prior works designed for the speci�c problems, which we demonstrate by

comparing Amandroid’s results with those of prior works whenever we can obtain the executable of those

tools. Since Amandroid’s analysis directly handles inter-component control and data �ows, it can be used to

address security problems that result from interactions among multiple components from either the same or

di�erent apps. Amandroid’s analysis is sound in that it can provide assurance of the absence of the speci�ed

security problems in an app with well-speci�ed and reasonable assumptions on Android runtime system and

its library.

CCS Concepts: • Security and privacy→ Software security engineering;

ACM Reference format:

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2018. Amandroid: A Precise and General Inter-

component Data Flow Analysis Framework for Security Vetting of Android Apps. ACM Trans. Priv. Sec. 1, 1,

Article 1 (January 2018), 31 pages.

https://doi.org/10.1145/3183575

1 INTRODUCTION

The Android smart-phone platform is immensely popular and has by far the largest market share
among all types of smartphones worldwide. However, there have been widely reported security
problems due to malicious or vulnerable applications running on Android devices [14, 22, 27, 39,
46, 52, 55, 60, 66, 67].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2471-2566/2018/1-ART1 $15.00

https://doi.org/10.1145/3183575

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:2 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

Many security problems of Android apps can be discovered by static analysis on the Dalvik
bytecode of the apps, and there have been a number of earlier e�orts along this line [6, 8, 10, 12,
20, 26, 34, 37, 43, 47, 51, 53, 58, 62, 65, 67]. Compared with dynamic analysis, static analysis has
the advantage that a malicious app cannot easily evade detection by changing their behaviors in a
testing environment, and it can also provide a comprehensive picture of an app’s possible behaviors
as opposed to only those that manifest during the test run. Due to the inherent undecidability
nature of determining code behaviors, any static analysis method must make a trade-o� between
computing time and the precision of analysis results. Precision can be characterized as metrics on:

A missed behaviors (app behaviors missed by the analyzer that may present security risks,
also referred to as false negatives), and

B false alarms (behaviors that an app does not possess but the analyzer fails to rule out, also
referred to as false positives).

Android Static Analysis Challenges: A practical challenge in static analysis is to control the rate
of false alarms while not missing any (potentially dangerous) behaviors of apps. This is especially
signi�cant due to a number of features of Android.

(1) Android is an event-based system. The control �ow is driven by events from an app’s
environment that can trigger various method calls. How to capture all the possible control
�ow paths in this open and reactive system while not introducing too many spurious paths
(false alarms) is a signi�cant challenge.

(2) The Android runtime consists of a large base of library code that an app depends upon. The
event-driven nature makes a large portion of the control-�ow involve the Android library.
While fully analyzing the whole library code could improve the analysis’ faithfulness, it
may also be prohibitively expensive (or imprecise).

(3) Android is a component-based system and makes extensive use of inter-component com-
munication (ICC). For example, a component can send an Intent to another component. The
target of an Intent could be speci�ed explicitly in the Intent or be implicit and decided at
runtime. Both control and data can �ow through the ICC mechanism from one component
to another. Capturing all ICC �ows accurately is a major challenge in static analysis.

Prior research has attempted to address some of the above challenges. For example, FlowDroid [6,
24] formally models the event-driven lifecycle of an Android app in a “dummyMain” method, but
it does not address ICC. Epicc [43] statically analyzes Intent and uses an IDE [49] framework to
solve for Intent call parameters, but does not link the Intent call sources to targets and does not
perform data �ow analysis across component-boundaries. CHEX [37] uses a di�erent approach to
the modeling of the Android environment, by linking pieces of code reachable from entry points
(called splits) as a way to discover data �ows between the Android application components, but it
does not address data �ow through Intent channels. IC3 [42] is a composite constant propagation
engine to solve Intent values in the whole application. IccTA [34] extends FlowDroid and uses IC3
as the Intent resolution engine, which can track data �ows through regular Intent calls and returns.
However, IccTA is yet to track a special category of ICC named remote procedure call (RPC) that
invokes a method in a bound service component. DroidSafe [26] attempts to track both Intent and
RPC calls. It performs an app-level analysis with �ow-insensitive points-to information. None of
the works mentioned above can capture data �ows through “stateful ICC,” where component A
sends data to B through one ICC, and later component A retrieves that same data from B through
another ICC.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:3

All of these prior works have inspired our work. We designed and built Amandroid1 – a
component-based data �ow analysis framework tailored for Android apps. The executable and
source of Amandroid are publicly available.2 The main contributions from Amandroid are:

(1) Amandroid computes points-to information for all objects and their �elds at each program
point and calling context. The points-to information is extremely useful for analyzing a
number of security problems that have been addressed in prior works using customized
methods. Amandroid can be used to address these wide-range security problems directly
with very little additional work. We also show that such comprehensive analysis scales to
large apps.

(2) As part of the computation of object points-to information, Amandroid can build a highly
precise inter-procedural control �ow graph (ICFG) of an app component , which is both
�ow and context-sensitive [40]. This is a side bene�t of our approach compared to prior
works that have adopted existing static analysis frameworks (e.g., Soot [57] and Wala [23]),
which build ICFG with less precision [32, 59].

(3) For each app component, Amandroid builds a Data Flow Graph (DFG), which consists of the
component’s ICFG together with each node’s (in ICFG) reaching (points-to) fact set. Then,
Amandroid builds the data dependence graph (DDG) for each app component from its DFG.
Furthermore, for each app component Amandroid builds a summary table (ST) listing its
inter-component communication (control and data �ow) activities over multiple channels,
such as Intent, RPC, and static �elds. Amandroid is able to conduct an elementary string
analysis (due to its object-sensitivity) for inferring Intent/RPC call parameters, and �nds
the correspondence between an ICC source and the ICC targets based on a �ow/context-
sensitive matching algorithm. Using STs of multiple components, Amandroid can stitch
the component-level DDGs into an app-level inter-component DDG that supports both
intra-app and inter-app analysis.

(4) An analyst can add a plugin on top of Amandroid to detect the speci�c security problem
he/she is interested in. Through extensive experimentation, we demonstrate that a variety
of security problems can be reduced to querying DFGs and DDGs.

An earlier version of the work was published in ACM CCS 2014 [62]. The current version has
substantial extension and enhancement from the original Amandroid tool:

(1) We designed a new component-based analysis algorithm, which supports reasoning infor-
mation �ow through stateful inter-component communication, such as bindService, RPC
calls, and startActivityForResult.

(2) The new analysis approach obviates the need of computing an inter-component call graph.
This avoids the call graph blowup problem due to the inherent over-approximation in
intent resolution process, which could a�ect the original version of Amandroid as well as
other Android analysis tools. More details are discussed in Section 4.3.

(3) We present more technical details on algorithms and implementations and extended exper-
imental results.

We evaluated Amandroid on 4,600 real-world apps (2,300 Google Play apps shared by the
AndroZoo [3] group, and 2,300 malicious apps from the AMD dataset [61]). Our experimental
results show that Amandroid scales well. We used Amandroid to address security problems such as
data leakage (e.g., SMS message leakage), injection (e.g., intent injection), and misuse/abuse of APIs
(e.g., to hide app icon). The core framework of Amandroid takes several minutes to analyze one

1Aman means safe/secure in the Indonesian language.
2Amandroid is available at http://pag.arguslab.org/argus-saf with new name Argus-SAF (Argus Static Analysis Framework).

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

app on average. All the specialized analyses require very little additional coding e�ort (around 100
LOC) to leverage Amandroid’s DFGs and DDGs to address the speci�c problem, and the additional
running time is negligible (typically in the order of tens of milliseconds).
We then experimentally compare Amandroid with two state-of-the-art static analyzers for

Android apps: IccTA [34] and DroidSafe [26], and show that Amandroid can address a wider range
of security problems due to inter-component communications. Amandroid also found multiple
crucial security problems in Android apps that were never reported before in the literature.

Organization. The rest of the paper is organized as follows. Section 2 gives a motivating example.
Section 3 describes in detail Amandroid’s analysis methods. Section 4 presents Amandroid’s
component-based analysis model. We discuss implementation details in Section 5, experimentation
of our approach in Section 6, discuss limitations in Section 7 and related research in Section 8.

2 MOTIVATING EXAMPLE

A malicious app can conduct bad behaviors by leveraging the design (e.g., event-driven and inter-
component nature) of Android system and try to obfuscate its true objectives. Figure 1 shows an
example app (named “IMEI-leaking”), which consists of a few components while each one is a
separate Java class. We note that Android apps are component-based where each component is
an independent entity and is typically responsible for a speci�c task. For instance, an Activity

component implements the UI of the app, a Service component typically performs a long-running
task on the background, and a Broadcast Receiver component receives a broadcast message
from one component (or the system) and takes certain actions, and more.
An Android app does not have a “main” method; rather, components are invoked through the

various callback methods (including lifecycle methods). Depending on the events, the system invokes
the lifecycle methods of the components. It also remembers the recently sent intents and passes
them around, which can be abstracted in a component-level environment. Furthermore, there
can be control �ows and data �ows among the app components through the Android system. For
comprehensive analysis, the app analyzer tool needs to track such control and data �ows.
As an example, the following sequence of events (as labeled in Figure 1) can happen in reality:

(1) FooActivity starts BarActivity (via “startActivityForResults" API) and waits for Bar-
Activity to send back some result.

(2) When the user clicks on a button of BarActivity screen, the onClick method is triggered.
(3) BarActivity makes an RPC (Remote Procedure Call) call getImei() to a Service component

named MyService, and MyService returns an inner �eld (which has already possibly stored
the IMEI Id) to BarActivity.

(4) BarActivity sends back an intent (via setResult API), which contains the IMEI Id.
(5) Android system invokes onActivityResultmethod of FooActivitywith the above intent

as a parameter, and the IMEI Id is extracted and leaked (to the attacker) through a SMS
message.

To track the data and control �ow inside a component, a static analyzer needs a model of the
Android system to track invocation of the callback methods including the component lifecycle
methods as illustrated in the above example. Our model of the Android environment is inspired by
FlowDroid [6, 24], which uses a “dummyMain” method to capture all possible sequences of lifecycle
method invocations as followed in Android. However, unlike an app-level environment model
used in FlowDroid, we design a component-level environment model. The motivation behind the
component-level model choice is that Android apps work in this way.
Furthermore, we need to track data and control �ow through each type of inter-component

communication channel (e.g., Intent, RPC, etc.). As an example, when BarActivity sends out

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:7

Algorithm 1 Generating the Environment Method of Component C

Input: The name of the component C, manifest �le, resource �les, IR of C.
Output: C’s environment method, Env_C
1: procedure GenEnv(C)
2: create a method Env_C having one parameter Intent i, and an empty body;
3: callBacks ← collectCallbacks(C);
4: add callBacks into the body of Env_C in the proper sequence emulating the reality;
5: return Env_C;

6: procedure collectCallbacks(C)
7: callBacks ← empty Set;
8: while �xed-point is not reached do
9: perform reachability analysis to mark methods that are reachable from C

10: callBacks ← callBacks ∪ callBacks from the XML-resource �les
11: callBacks ← callBacks ∪ interface-based callbacks as registered in C’s source code
12: callBacks ← callBacks ∪ other callbacks (system methods that are overridden) in C’s source

13: return callBacks ;

etc.; they each represent a state in the transition diagram of the lifecycle. Android documentation
speci�es other states such as Activity running and Activity shut down. Similarly, other
types of components (e.g., Service, Broadcast Receiver, etc.) have a well-de�ned lifecycle involving
multiple lifecycle methods.
Amandroid introduces component-level models instead of FlowDroid’s whole app-level model.

The environment of a component C represents a main method, Env_C, which takes as parameter
an incoming intent i and invokes C’s lifecycle methods (e.g., onCreate, onBind, or onReceive)
based on C’s type (Activity, Service, Broadcast Receiver, etc.) and other callback methods (e.g.,
onLocationChanged) so that all possible paths are included. This component-level model is more
e�ective in capturing the impact of the Android system on both the control sequence and data
�ow of an app’s execution. We have a dedicated environment for each component that invokes
the set of callback methods implemented in the component; this is the control part of modeling
Android’s environment. In addition, the environment also keeps tracks of the intents received by the
component (e.g., Environment of BarActivity remembers the intents sent to start BarActivity)
so that the intents could be made available when necessary (e.g., to serve getIntent() at L38 in
the BarActivity component); this is the data part of modeling Android’s environment. Env_C
also passes the intent parameter when necessary for other relevant methods (e.g., onReceive of a
Broadcast Receiver).
Amandroid generates the Environment Method (Env_C) of each component C in the app auto-

matically. Algorithm 1 shows the pseudocode for generating Env_C of a component C. As the �rst
step, an empty method with an Intent i as the parameter is generated. (Note that Intent i typically
represents the Intent which starts the component – for instance, e.g., the parameter of Environment
Method of BarActivity is basically the intent that starts BarActivity) Then, we collect basic
information from the resource �les in the apk and uses this information to collect layout callback
methods. We then generate the body of Env_Cwith lifecycle methods based on the type of C. Finally,
we collect other callback methods (e.g., onLocationChanged) in C (through a reachability analysis)
in an incremental fashion (following the FlowDroid [6] approach). All of these are done before
performing the data �ow analysis as discussed in Section 3.3 and Section 4.1.

3.3 Component-Based Analysis

Android is a component-based system, and hence analyzing the code at the component level �ts
more to the nature of Android applications. The example in Section 2 illustrates how data-�ows
can happen inside one component and across multiple components.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

Amandroid takes each component’s environment method as an entry point of analysis, and
performs data-�ow analysis as well as data dependency analysis.

For each component C that is reachable from outside, Amandroid builds a data �ow graph (DFG).
DFG includes the control �ow graph spanning over all the reachable methods of C; it also tracks
the set of object creation sites that reach each program point (thus, Amandroid knows the dynamic
types of objects �owing to any particular program point, and where they were created and modi�ed
along the way). Then, Amandroid builds the data dependence graph (DDG) on top of the DFG,
which implies explicit information �ow. Amandroid also builds a summary table (ST) documenting
the component’s possible communication channel with other components. Later, when necessary,
an app-level DDG is built by stitching together the individual components’ DDGs. The detailed
discussion and algorithm of how to perform those analyses, and the uses of such results will be
presented in Section 4.

3.4 Using Amandroid for Security Analyses

Amandroid provides an abstraction of the app’s behavior in the forms of DFGs and DDGs. We now
discuss how they can be easily used for a number of useful security analyses.

3.4.1 Data Leak Detection. One important problem in app vetting is to �nd whether an app may
leak any sensitive data. Examples of sensitive data include user-login credentials (e.g., password),
location information, and so on. This can be performed through standard data dependence analysis
using the DDG. Given a source and a sink, one can �nd whether there is a path from source to sink
in the DDG. For instance, prior research [7, 24] has documented a list of security-critical source and
sink APIs, which can be used here. One could also customize the de�nition of the source and sink
for the speci�c problem at hand. DDG can only capture explicit information leaks. For information
leaks through controls (e.g., leaking conditionals through the branches) one would need to build a
control dependence graph, which can be obtained from the DFGs through the standard process [4].
Amandroid can perform a comprehensive analysis since it captures control and data �ows

across the component boundaries through Intent channel, RPC channel, and others so that security
problems like the one shown in Figure 1 can be captured.

3.4.2 Data Injection Detection. An app can have a vulnerability which allows an attacker to inject
data into some internal data structures, leading to security problems. Researchers [37] identi�ed a
subclass of this vulnerability called intent injection. The attacker can send an ill-crafted intent to a
public component of a vulnerable app, which retrieves data from the incoming intent and uses it
for security-sensitive operations. For instance, the app’s logic can be such that the incoming intent
determines the destination of a critical data �ow — the URL of a backup server, the name of a �le,
the destination component of an ICC call, phone number of an outgoing SMS, or others. As a result,
the attacker will be able to control the destination, which can lead to serious security problems.
Amandroid can detect this vulnerability using the DDG, by de�ning the source as the possible

entry point of attacker-controlled data (e.g., a public-facing interface), and the sink being the critical
parameters of the security-sensitive operations. If a data-dependency path exists between the
source and the sink, the attacker can potentially manipulate the parameters of the security-sensitive
operations.

3.4.3 Detecting Misuse/Abuse of APIs. Another critical part of security vetting is to �nd if the
developer (intentionally or unintentionally) has used a library API in an improper way, which may
lead to security problems. Past research has applied static analysis to identify misuse of Crypto
APIs [18] and SSL APIs [21]. The main idea is to detect if the app satis�es a set of rules on proper
use of the APIs. For example, if the parameters for calling the AES encryption method have certain

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:9

values the cipher will run in the insecure ECB mode. Amandroid can verify these rules by checking
the possible values of the parameter objects in a relevant API call by querying the DFGs.

4 COMPONENT-BASED ANALYSIS

An Android app might have multiple components while the components can communicate with
each other via various channels: Intent, RPC, static �eld, etc. Thus security sensitive data items can
also �ow through these channels. Moreover, in an inter-app communication, one component of
app X interacts with one component of app Y; hence, communication across di�erent apps can be
considered as inter-component communication. Thus our approach considers the component-based
analysis as the basic building block for app vetting. We do both intra- and inter-component analysis
(covering both intra-app and inter-app analysis, if necessary).

Determining object points-to information is a core underlying problem in almost all static analyses
for Android app security, such as �nding information leaks, inferring Intent calls, identifying
misuse of certain library functions, and others. Instead of addressing each of these problems using
di�erent specialized models and algorithms, it is advantageous to pre-calculate all object points-to
information at once, and use this as a general framework for di�erent types of further analysis.
This way the cost of computing points-to information is amortized across the large number of
specialized analyses one will likely need to perform on a given app.
Existing o�-the-shelf static analysis tools such as Soot [57] (used by FlowDroid [6, 24] and

Epicc [43]) and Wala [23] (used by CHEX [37]) have not provided capability of calculating all
objects’ points-to information in a both �ow and context-sensitive way [32, 59]. This is due to
concerns about computation cost. However, with the advancements in hardware (e.g., many-core
machines), it opens new possibilities to perform a more precise analysis.
Generally speaking, the core task of Amandroid’s analysis is aimed to build a precise inter-

procedural data �ow graph (DFG). The �ow-sensitive and context-sensitive data �ow analysis
to calculate object points-to information is done at the same time with building inter-procedural
control �ow graph (ICFG). This is because in order for one to precisely know the implementation
method of a virtual method invocation, one needs to know the receiver object’s dynamic type;
conversely, �ow-sensitive data �ow analysis requires one to know how the program control �ows.
Thus, there is a mutual dependency between the two analyses. Such integrated control and data
�ow analyses approach has been demonstrated to be both practical and e�ective for even analyzing
temporal properties of concurrent Java programs including the standard Java library codebase [17].
However, [17] does not keep track of method calling context (typically termed monovariant calling
context analysis or 0-calling context [40]). We generalize the approach to precisely track the last k
calling contexts (polyvariant [40], a.k.a. k-limiting where k is user-con�gurable and the additional
calling context beyond k is monovariant).

Our analysis approach consists of the following phases: (1) Build data �ow graph (DFG) for each
component (discussed in Section 4.1); (2) Build data dependency graph (DDG) for each component
(discussed in Section 4.2); (3) Perform inter-component analysis (discussed in Section 4.3, 4.4,
and 4.5).

4.1 Component-Level Data Flow Graph

Amandroid computes points-to facts for each statement. In the component-based analysis, we build
the DFG of each component of an app. Due to space constraints, the description (including the
algorithm and an example) of the basic DFG building process is presented in Appendix only. Below
we introduce the notations in DFG and use the example app (ref. Figure 1) of Section 2 to explain
its semantics. Figure 3 illustrates part of the resulting DFGs of the components in the example app.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:11

instance 6, the object created at location L6. From the object creation site we can directly �nd the
precise runtime type of the instance.

Let us use �N to indicate any possible value that is type compatible with the received objects at
location N . For instance, for objects returned from inter-component communication such as RPC,
we do not know the possible values that will be received from the communication. As an example,
location L37 generates a points-to fact 〈imei2, �37〉, indicating that the string variable imei2 points
to an object that is returned from the RPC call at location L37. A tuple-instance, like (“key”, �37)
in the entry set of L40, denotes a key-value pair.

There are two types of lhs of a points-to fact, yielding two types of facts. A variable-fact is when
the lhs is a variable. A heap-fact is when the lhs is an object �eld or an array element. For example,
location L7 generates a heap-fact 〈(6, mComponentName), (“BarActivity”)〉, meaning that the �eld
mComponentName of instance 6 points to the string “BarActivity”.

4.1.2 Modeling Library and Native Calls. Android has a large number of library APIs (that an
app can call) some of which are implemented natively. Similarly, an app developer may choose
to natively implement some functionality (e.g., for performance reasons). Amandroid does not
analyze native code; thus, we need to provide models for native methods that summarize how
the data �ow facts may be changed. For library APIs that have well-understood simple semantics,
one can summarize them as �ow functions (gen and kill). Besides native methods, we also provide
models for non-native library methods that are frequently used; this is useful to scale the analysis.
In general, Amandroid adopts the following strategy in modeling Android library functions and
native methods:

(1) For library functions that provide important information for static analysis (e.g., intent
manipulation functions), wemanually build a precisemodel for them based on the function’s
implementation and/or documentation (each model simply consists of custom gen and kill
functions).

(2) For all other library functions and native methods, we provide a uniform conservative
model. The conservative model essentially assumes that for every object parameter, any of
its �elds may be modi�ed and becomes unknown; that is, the �eld can point to a fresh object,
or any existing object reachable from the method parameters (and static �elds) that is type
compatible. If the function also returns an object, the returned object is also considered
unknown.

In Figure 3, line L39 inserts a key-value pair (“key”, imei2) into intent i3’s mExtras4 �eld. The
putExtra is an Android system API and we model it so that we can keep track of the data �ow
through the call. In this case, the model of the API will assign the key-value pair to the mExtras
�eld of intent i3. The generated fact at Line L39 is then 〈(env, mExtras), (“key”, �37)〉 following our
notation for a �eld-fact, where env represents the creation site of intent i3, and �37 represents the
String object imei2 points to. Note that env represents the entry point of the environment method
of BarActivity.

4.1.3 Handling Inter-component Channels. During the intra-component analysis phase, one
cannot tell what data will be received by this component from others through inter-component

4The mExtras �eld is an aggregate object that may store multiple key-value pairs. We currently do not model such aggregates

and instead “�atten” all the elements in an aggregate into singleton instances. This will create two possible interpretations

of multiple facts regarding an aggregate object: either they are di�erent possibilities from di�erent program branches, or

they are part of a single aggregate in the same branch. Amandroid’s static analyzer conservatively assumes both are possible

to ensure soundness, but this could lose some precision. Modeling aggregates is an engineering work that we will address

in future work.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:13

Figure 4a shows a case where a Service C has a �eld f and two RPC methods set() and get()

which set and get data from �eld f, respectively. These two RPC methods can be invoked in any
order with any data from all other components. For example, component A may set a sensitive data
into Service C’s �eld f, and component B could retrieve such data from C via the get() RPC call
later, forming an information �ow path. Figure 4b shows another case where component A, B share
data via static �eld X.f, which can form an information �ow path from A to B.

Traditional context-sensitive call graph generation cannot capture this type of information �ow
from “stateful ICC.” In the above example, neither the call sequence A -> C nor B -> C can capture
the information �ow A->C->B. The information �ow only happens through interleaving the three
components’ execution in the order {A, C, B, C}, where the �rst two captures the RPC call A -> C and
the latter captures the RPC call B -> C. Such concurrency execution semantics can be modeled by
treating ICC in a context-insensitive manner, and merging all the data�ow facts at a component’s
ICC entry point – simulating the e�ect of all possible orders of interleaving.
Based on this idea, one approach is to compute a global �xed-point among all the components

while �owing the points-to facts context-insensitively between components (intra-component
data�ow is still context-sensitive).5 The downside is that for any new set of components we want
to analyze, we would have to re-compute the global �xed-point, making it impossible to re-use the
per-component analysis result. Thus we adopt a di�erent approach. When computing the DFG for
each component in the intra-component analysis phase, we assume that any type-compatible data
is possible to enter the ICC channels. In addition we book-keep all the data that may enter and
leave the component through the channels. In the inter-component analysis phase, we then “stitch”
the inter-component communication channels’ receive points with the corresponding send points
(between two di�erent components), forming the inter-component data dependence graph.

This conservative approximation serves the purpose of our goal well: 1) Android is a component-
based system and any component may receive data from any other component – not necessarily
the ones in the same app; thus assuming any type-compatible data may come into the ICC channel
is consistent with Android’s execution semantics; 2) This reasoning model obviates the need of
computing ICC call graphs, thus eliminates the call graph explosion problem that may happen in
other Android analysis tools, including the original version of Amandroid [62]; 3) By analyzing
each component separately, it allows us to re-use the intra-component analysis result for any
further inter-component analysis, possibly involving di�erent subsets of the components. This will
scale better with large volumes of apps and naturally extends to inter-app analysis.

In the inter-component analysis phase the DFG of all the involved components are loaded. Based
on the ICC channel book-keeping information we then �nd the data dependence between the
sender and recipient points. The book-keeping information is stored in a data structure called
the summary table (ST). We generate an ST for each component C via processing C’s DFG, where
ST lists the communication channels through which C communicates with other components. ST
records speci�cation of di�erent types of channels including e.g., Intent, RPC, and static �elds6.
In particular, for each such channel the ST of C records the following items: (1) send-points where
C is the sender of the channel. The information recorded includes what kind of data is sent (e.g.,
outgoing Intent value for an Intent channel) and the receiver’s name. (2) receive-points where the
component C is the receiver of the channel. The recorded information includes receiver’s name
which allows matching with other components’ send-points. For example, for Intent channel, the

5It is quite non-trivial to compute this global �xed-point while at the same time simulating the non-determinism caused by

the interleaving concurrent threads [17].
6Files can serve as an inter-component communication channel like static �elds, and can be handled in a similar way. This

would require a precise string value solver, which we leave for future work.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

intent �lter value; for RPC channel, the RPC method’s signature, and so on. Table 1 lists the main
items in a ST .

Table 1. Communication points of an app component as listed in its Summary Table

Channel Send-points Receive-points
Intent Outgoing Intent Intent Filter
RPC Method signature, params, return Method signature, params, return
Static Field Field signature to write, data Field signature to read

With the help of Figure 4, we now discuss how the STs are constructed and used. There are
three components in Figure 4a, whose DFG has already been built. In component A, we saw a
RPC call C.set(d) that sends data d to Service C via the RPC channel C.set(). We add this to
the RPC channel’s send-point description in A’s ST . Component B has a RPC call C.get() which
sends a request to Service C and expects a return value from it. We add it to both the send-point
and receive-point description of B’s RPC channel. Service C has two RPC methods C.set(x) and
C.get(); we add them to the receive-point of C’s RPC channel. C.get() is returning a value back
to its caller; we add it to the send-point of C’s RPC channel. Figure 4b shows the inter-component
communication caused by static �eld. Here the send-point description indicates a write to the
static �eld, and a receive-point description indicates a read from the �eld. With the STs for each
component constructed, we can “stitch” the send and receive points of the channels between two
components to identify all possible inter-component data dependency. The “stitching” process is
basically matching each channel’s send-point with receive-point between two components based
on channel speci�c criteria. For example, in Figure 4a we can stitch component A’s send-point 1
to component C’s receive-point 1, because their method signatures match. After “stitch” all the
send-points and receive-points (the arrows shown in Figure 4a), we can easily see the information
�ow path from d in component A to leak in component B.

In the next three subsections we further discuss the ST construction and this “stitching” process
for each type of ICC channels.

4.3.1 Intent.

ST Construction.
Section 2 illustrates that malicious apps can easily manipulate Android’s inter-component

communication (ICC) to stealthily leak sensitive data. To track data �ow through the Intent channel
we need to solve statically certain values for the intent involved. At a send-point we need to solve
for the Intent call parameters to infer the value of the outgoing Intent, so we can match it with the
correct receive-points. At the receive-point we need to discover the Intent �lter value so we can
match it with the possible send-points. Amandroid infers the Intent API call parameters and Intent
�lters using the points-to facts computed and the app manifest �le. This information will enable
us to discover the source-destination component pair of the Intent call in the inter-component
analysis phase.
The destination of an Intent can be either explicitly or implicitly speci�ed in the outgoing

intent. The common way of creating an explicit intent is by adding the destination component’s
name using Android APIs such as setClass (L7 in Figure 3). For instance, at L8 in Figure 3
Amandroid can derive that the intent parameter i1’s �eld mComponentName is “BarActivity.” This
fact comes from the modeling of the API function setClass called at L7, which generates a �eld-fact
〈(6, mComponentName), “BarActivity"〉, where 6 represents Intent i1 which was created at L6. We
record the destination component name as a send-point in ST . Also, we document in ST whether the

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:15

Intent caller expects a result returning later from the callee component (in case of stateful Intent call
like “startActivityForResult” as opposed to stateless Intent call like “startActivity”, “bindService”,
etc.).
An implicit intent does not include the name of a speci�c destination component, but instead

requests a general action to perform, and the System �nds a capable component (from the same app
or another) which can ful�ll the request. Some �elds of an Intent object are used in this matching:
mAction (String), mCategories (set of String), mData (Uri), and mType (String). These intent �elds
can be manipulated by invoking certain Android APIs. For instance, i.setData(Uri.parse(http:
//abc.com/xyz)), which sets the Uri corresponding to a http url to the mData �eld of an Intent i.
Through proper modeling of these API functions (Section 4.1.2), Amandroid can derive possible
(String) values of the relevant �elds of an Intent object, which the Android system bases its decision
on Intent destinations. Amandroid documents these �elds of the Intent as send-points in ST .

Stitching Intent channels – Intent destination resolution.
For explicit intents it is straightforward to �nd the correspondence between the source component

and the destination component. The matching information is directly available as the send-point (in
the ST) of the source component and as the receive-point (in the ST) of the destination component.
For example, FooActivity has a send-point at L8 (startActivityForResult()) where Intent i1
has the target component name set to “BarActivity”, which matches the receive-point in the ST of
BarActivity. Hence we discover the correspondence.

However, tracking the “return” intent j sent by the callee component X in a stateful Intent is more
complicated, e.g., the name of the destination component of the intent i3 sent through the “setRe-
sult” API as in L40 of BarActivity is not available in the app code (neither in the ST of BarActivity).
To know the possible destinations of intent j, we �rst check through all components’ ST to �nd
components Ys which have initiated a stateful Intent call (i.e., startActivityForResult) to com-
ponent X (e.g., BarActivity). Then, we infer that onActivityResult API of each of components
Ys will receive intent j as a parameter.

Furthermore, there are some challenges in resolving the target of an implicit intent. The Android
system �nds the destination based on the intent �elds as well as the manifests of all the apps
which specify intent f ilters for a component. An intent f ilter is an XML expression involving the
action tag, cateдory tag, and data tag (which includes both Uri and type). The Android system
determines the destination of an implicit intent by applying a set of rules [1] matching the relevant
intent �elds and the intent �lter speci�cation for every component on the system. Amandroid
implements all those matching rules, using the static analysis results that show the possible string
values of the relevant intent object �elds. It runs a precise actiontest , cateдorytest , and datatest
(having both Uri and type) to �nd the destination component(s). Our static analysis can readily
handle Intent �elds. For complicated String operations (e.g., concatenation in a while loop), if
Amandroid cannot infer the exact string value, it reports it as any string, ensuring the soundness of
our analysis. We are able to run the Uri test matching di�erent parts of the Uri (e.g., scheme, path,
host, port) between the intent and an intent �lter. Furthermore, Amandroid is also able to �nd the
speci�cations of dynamically registered Broadcast Receivers, if any.

4.3.2 RPC.

ST Construction.
A service provides the programming interface that a client component can use to interact with.

This allows a client component to send/receive data to/from the service via a RPC call. In the
example app of Figure 1, MyService de�nes an inner class MyBinder which extends the Binder
class, and returns such a Binder instance in onBind() lifecycle method. MyBinder returns handle of

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

MyService which exposes two RPC methods, MyService.setImei() and MyService.getImei().
BarActivity binds to MyService at L25 which uses a ServiceConnection de�ned at L45. After the
bind succeeds, it will set the above handle to the s �eld of BarActivity. At L37 when user clicks
on a button at BarActivity, it will invoke the RPC call of MyService.getImei() to retrieve data
from MyService.
Fortunately, in static analysis, discovering the above RPC connection between two compo-

nents (intra-app, or Local Service) is straightforward. After resolve bindService() call at L25,
we know the target service is MyService. Then at L37 we know the target method’s signature is
MyService.getImei(). In addition to the Local Service (intra-app) case above, there are two more
cases, Messenger Service and AIDL (a.k.a. Remote Service), which allows both intra- and inter- app
RPC calls. For Messenger Service case, we �rst infer the Handler type registered to the Messenger
instance that used at the service side, and mark the Handler’s handleMessage() as the RPC callee.
At the client side, we mark the invocation of Messenger.send() as the RPC caller. AIDL case is like
the local service case, we can resolve the bindService() call to �nd target service and then �nd
the RPC callee. For both the caller component and the callee component, we document the RPC
method signature, parameters, return variable (some as send-points and some as receive-points) in
ST .

Stitching RPC channels. Amandroid �rst evaluates Intent channel of ST to �nd the binding
relation between client component and service component. Then, based on the binding relation to
match the RPC caller and callee. For Local Service and AIDL case, we match the call signatures to
link the RPC caller and RPC callees. For Messenger Service, we match the Messenger.send() to
Handler.handleMessage().

4.3.3 Static Field.

ST Construction. Documenting static �eld is straightforward as each static �eld has its unique
name. In our ST we just need to record from which program point which static �eld is read
(receive-point) or written to (send-point).

Stitching static �eld channels. We just need to match the static �eld’s name at send-point and
receive-point to make the connection.

4.4 Building App-level Data Dependence Graph

After �guring out all the channel matchings, we connect the data dependency links among compo-
nents’ DDGs to build an app-level DDG. The time complexity of this stitching process is in the worst
case quadratic to the number of components being analyzed. Then we can perform data dependency
analysis of the app. For instance, to query the data leakage on the example app in Figure 3, we
can �nd a taint source at MyService.setImei() method – any other component can use this
RPC call to set the phone IMEI to the MyService.imei �eld. Then at the MyService.getImei()
RPC method the return point can get IMEI and return back to L39 at BarActivity; then it puts
this information into Intent i3’s mExtra �eld, and at L40 sends as a result Intent to the caller
component FooActivity. At FooActivity.onActivityResult(), L6 extracts IMEI and sends it
out via sendTextMessage(), which is a sink point.
Since DDG is a directed acyclic graph, the complexity of shortest path �nding is linear to the

number of nodes and edges, which in the worst case is quadratic to the size of all the components
combined. Thus, even if over-approximation in the Intent destination resolution resulted in spurious
data dependence paths, it will not have a substantial impact on the running time.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:19

The most computation-intensive step in Amandroid is building the DFG for each component.
Once the DFG is built, the running times of the subsequent analyses are negligible – these include
building ST , DDG and running the specialized analyses on top of them. Figure 6 presents the time
taken by Amandroid to construct DFG for 4,600 real-world apps (GPlay and MAL).

These apps have 141319.50 lines of bytecode instructions on average. The median running time
for computing the DFG for all the components in an app is 3 minutes; the minimum is 0.15 seconds
whereas the maximum is 169 minutes. The scatter plot shows both the running time and the size of
the app (in number of bytecode instructions).

We observe an increase in running time of new Amandroid compared to the original version [62].
The reason is two-fold: (1) The complexity of Android apps (i.e., the dataset on which Amandroid
runs) has increased over years, and the dataset we used in this experiment is more recently collected;
(2) The new Amandroid has a more complete model (i.e., component-based analysis as discussed
in Section 4) to simulate the semantics of Android application, which was not captured in the old
version.

6.2 RQ2: How accurate is Amandroid compared with other tools?

We use two benchmarks, Droid-Bench and ICC-Bench to compare Amandroid with two most
well-known static analysis tools for Android: IccTA [34], and DroidSafe [26]. The benchmark
testsuites consist of hand-crafted apps designed to test certain analysis features. Since those apps
are hand-crafted, the ground truth is known, which allows us to compute metrics such as precision
and recall. However, one needs to keep in mind that these metrics are not representative of the
performance of the tools on real-world apps. They can only be used for comparison purposes.

Table 2. Results on Benchmarks. O = True Positive, * = False Positive, X = False Negative.

(a) Droid-Bench

App Name IccTA DroidSafe Amandroid

Inter-component Communication (ICC)
ActivityCommunication1 O O O
ActivityCommunication2 OO* OO OO*
ActivityCommunication3 X O O
ActivityCommunication4 OO* OO OO
ActivityCommunication5 O O O
ActivityCommunication6 X O O
ActivityCommunication7 O O O
ActivityCommunication8 OO* OO OO
BroadcastTaintAndLeak1 OO OX OO
ComponentNotInManifest1
EventOrdering1 O O O
IntentSink1 O O O
IntentSink2 O O** O
IntentSource1 O O O
ServiceCommunication1 X O** O
SharedPreferences1 O O O
Singletons1 X O X
UnresolvableIntent1 OOO OOO OOO

Sum, Precision and Recall — ICC
O, higher is better 19 22 22
*, lower is better 3 4 1
X, lower is better 4 1 1
Precision p = O/(O + *) 86% 85% 96%
Recall r = O/(O + X) 83% 96% 96%
F-measure 2pr/(p + r) 85% 90% 96%

Inter-app Communication (IAC)
Echoer

N/A N/A O14*5SendSMS
StartActivityForResult1

Precision and Recall — IAC
Precision p = O/(O + *) 74%
Recall r = O/(O + X) 100%
F-measure 2pr/(p + r) 85%

(b) ICC-Bench

App Name IccTA DroidSafe Amandroid

Part A — Intent Addressing
Intent_Explicit1 O X O
Intent_Implicit_Action OO XX OO
Intent_Implicit_Category OO XX OO
Intent_Implicit_Data1 OO XX OO
Intent_Implicit_Data2 OO XX OO
Intent_Implicit_Mix1 OOO XXX OOO
Intent_Implicit_Mix2 OO XX OO
Intent_DynRegisteredReceiver1 OO XX OO
Intent_DynRegisteredReceiver2 OO* XX OO*

Part B — Intent Data Flow Tracking
Intent_Explicit_NoSrc_NoSink
Intent_Explicit_NoSrc_Sink
Intent_Explicit_Src_NoSink
Intent_Explicit_Src_Sink O X O
Intent_Implicit_NoSrc_NoSink
Intent_Implicit_NoSrc_Sink
Intent_Implicit_Src_NoSink O X O
Intent_Implicit_Src_Sink OO XX OO
InteneIntentService O X O
Intent_Stateful OOO OXX OOO

Part C — RPC
RPC_LocalService O X O
RPC_MessengerService X X O
RPC_AIDL X X*** O
RPC_ReturnSensitive O X O

Part D — Mixed
Intent_RPC_Comprehensive X X****** O

Sum, Precision and Recall — ICC-Bench
O, higher is better 28 1 31
*, lower is better 1 9 1
X, lower is better 3 30 0
Precision p = O/(O + *) 97% 10% 97%
Recall r = O/(O + X) 90% 3% 100%
F-measure 2pr/(p + r) 93% 5% 98%

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:20 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

DroidBench [16] is a benchmark testsuite published by the FlowDroid team, which consists of
Android apps for evaluating information-�ow analysis. The version we used contains 21 apps, in-
cluding inter-component communication challenges as well as inter-app communication challenges.
ICC-Bench [30] contains 24 apps for testing various Intent communication, RPC communication,
static �elds tracking capabilities as well as multi-app analysis capabilities. The test apps in ICC-
Bench are categorized in four parts each of which focuses on one type of ICC: Part A involves various
types of intent handling: explicit intent target �nding, implicit intent target �nding (via matching
action, categories, data and type), and dynamically registered component handling, etc.; Part B
focuses on the accuracy of the analysis by including a variety of scenarios where certain Intent-
related information �ow paths do or do not exist, and the capability to handle IntentService7 and
Stateful ICC; Part C tests the ability of handling di�erent types of RPC communications; Part D
contains one comprehensive test case to test whether the tool can handle complex scenarios where
data may �ow via various communication channels. ICC-Bench is designed by us and publicly
available [30]. The apps in these testsuites are not crafted to favor a particular tool. They represent
common scenarios one will �nd when reasoning about the relevant security issues.

We run each tool on each test app to check if the tool can report the correct data leak paths. The
detailed comparison of the performance of IccTA, DroidSafe and Amandroid on DroidBench and
ICC-Bench is available in Table 2. The results are shown in terms of True Positive (O), False Positive
(*), and False Negative (X), if any. If a test app contains multiple data leak paths, the result is shown
for each of them. As an example, in Table 2 for ActivityCommunication2 app of DroidBench, both
IccTA and Amandroid have entry “OO*”, which indicate that these tools detect two paths (i.e., OO)
but also report one false path (i.e., *). We observe that Amandroid outperforms IccTA and DroidSafe
on both benchmarks. The sole false negative of Amandroid for Droid-Bench is due to Amandroid
not modeling Java Singleton. The false positives of Amandroid on both benchmarks are due to
context-insensitive inter-component data �ow handling and the rudimentary string analysis.
Although IccTA’s website claims that the tool is capable of performing inter-app analysis by

combining multiple apks into a single apk, in our experience their ApkCombiner failed to combine
the inter-app communication apps in DroidBench. Thus we could not obtain any result from IccTA
on the inter-app communication experiment for Droid-Bench. Moreover, the ICC-Bench apps
have all been updated to the newest Android version (Android 7.1.1), representing the current
Android application design with the new permission acquiring mechanism introduced by Android
M and later versions. Neither IccTA nor Amandroid had problem of detecting data leaks in the
new version of apps after we manually updated some of their dependency libraries and Android
sdk. However, DroidSafe could not handle the new design even after we updated the dependency
libraries and Android SDK, and that is the reason DroidSafe is shown to be missing so many paths
over ICC-Bench testsuite.

6.3 RQ3: How e�ective is Amandroid’s Intent resolution for real-world apps?

We evaluate Amandroid on all 4,600 real-world apps in our dataset, to calculate the precision of
the Intent resolution. As Table 3 indicates, in GPlay 21,062 ICC calls require Intent resolution, and
Amandroid is able to infer precise Intent string values for 17,354 (89%) of them. In MAL apps, 18,749
ICC calls require Intent resolution, and Amandroid is able to infer precise Intent string values
for 13,883 (80%) of them. Overall 85% of the ICC cases can be precisely resolved, showing that
Amandroid’s Intent resolution is capable of handling real-world apps and will not introduce too
much over-approximation for ICC data �ows.

7IntentService is a special Service, which receives an Intent and executes the corresponding operation in background.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:22 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

Table 4. Crypto Library Misconfiguration Checker Report.

Dataset GPlay MAL
#apps using ECB mode 438 303
#apps using non-random IV 210 87

of visual security indicators for SSL/TLS usage in the development environment (IDE). As a result
SSL/TLS library APIs can be easily miscon�gured [21, 51].

One common misuse case is allowing all hostnames for the SSL/TLS’s HostnameVerifier, by in-
voking SSLSocketFactory.setHostnameVerifier()with parameterALLOW_ALL_HOSTNAME_
VERIFIER. To capture this, the checker will evaluate whether the parameter passed to SSLSocket-

Factory.setHostnameVerifier() is equal to ALLOW_ALL_HOSTNAME_VERIFIER.
Another misuse case is accepting all certi�cates or accepting all hostnames for a certi�cate as

long as a trusted CA signed the certi�cate, by providing their own or third-party-implemented
TrustManager and SocketFactory. [21] provides a list of problematic TrustManager and SocketF-
actory implementations with its class names, which our checker plugin searches for in a given app.
Table 5 summarizes the results we obtained through running the above checker on the app dataset.

Table 5. SSL/TLS Misconfiguration Checker Report.

Dataset GPlay MAL
apps with Bad TrustManager 63 18
apps with Bad SSLSocketFactory 37 13
apps with Bad SSL hostname con�guration 288 192

6.4.4 Data Leakage Checker. Phone call logs, contacts, and SMS messages are a few examples
of user’s sensitive information which should be kept private. Amandroid can be used to check
whether an app obeys the above data usage policy. We apply simple strategies to identify the
various communication data sources. Basically, Amandroid tracks the corresponding (i.e., tied
with the data source) string literals or BroadcastReceivers: (1) Call logs: “content://call_log/calls”;
(2) Sim card contacts: “content://icc/adn”; (3) Phone contacts: “com.android.contacts”; (4) SMS:
“content://sms/inbox/” and input for BroadcastReceivers handling the “SMS_RECEIVED” event.

On the other hand, the sinks are any outgoing communication channel, such as http/https write,
SMS send, implicit Intent send, etc. We found several potential sensitive data leakage cases, some
of which are shown in Table 6.

Table 6. Data Leakage Checker Report.

App Name Dataset Description
com.skymoons.hqg.anzhi.apk GPlay Read user’s SMS inbox, write into log, then send text message to the senders.

12050f267d5e8ce6f77d2111cd3043f0.apk MAL
Read user’s SMS inbox, store in a JSON object, write into SharedPrefeferences,
then upload to its C&C server.

5339a0e7e86ac1f5472f832874426c25.apk MAL Upload user’s SMS content and information to its C&C server.
51bf3112982473e99b88965f6e271799.apk MAL Read user’s SMS inbox, upload to its C&C server, send text message to senders.

6.4.5 Intent Injection Checker. Intent is one of the most commonways for an Android component
to receive and process data from outside. If an appmakes wrong assumptions for the incoming intent
and performs sensitive operations based on it, that may result in serious security holes [37, 60].
To detect the above issue, in Amandroid we mark the intent receiving point as the source, and

sensitive operations (e.g., open URL connection, crafting another intent, etc.) as sink. We then query
the DDG to �nd whether there is a data dependence path between them. We found several potential
intent injection cases, some of which are shown in Table 7.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:23

Table 7. Intent Injection Checker Report.

App Name Dataset Description

com.qryptal.verifydetailsauthenticate.
android.apk

GPlay
Allows any app inject URL to its ShareActivity, which will then encode it to a
Barcode and display to the user. If user scan the Barcode, theymight be redirected
to malicious websites.

com.freegame.basketball.apk GPlay
Allows any app inject data into its SharedReference, which will disable this app’s
functionality.

com.mmmono.mono.apk GPlay
Allows any app send commands to start/stop its service’s heartbeat and connec-
tivity status.

com.big�shgames.dmddgoogfree.apk GPlay Allows any app send commands to launch arbitrary URL and components.

6.5 RQ5: How much e�ort does it take to build a new analysis on top of Amandroid
core framework?

The advantage of Amandroid’s approach is that the general framework provides a means for
building a variety of further security analyses in a straightforward and easy way. Each special
analysis built on top of Amandroid involves developing a “Checker plugin” that leverages the DFGs
and DDGs from Amandroid’s analysis. Moreover, once the core analysis produces DFGs and DDGs
for an app, they can be stored and reused in multiple security analyses. We present the summary of
the plugins used in the above applications in Table 8, which shows their size in Scala LOC, as well
as the average running time. This can be compared with the size of the core engine and its average
running time, shown in the last row of the table.

Table 8. Code Size and Running Time (Checkers and Core)

Name
Approx. Size

Avg. Time
(Scala LOC)

Hiding-Icon Checker 40 50ms
Crypto Library Miscon�guration Checker 109 50ms
SSL/TLS Miscon�guration Checker 62 20ms
Data Leakage Checker 73 50ms
Intent Injection Checker 23 100ms
Core Framework 46,345 440s

7 DISCUSSIONS

Currently Amandroid only does constant propagation for string values, and has a conservative
model for string operations. This limitation causes 15% imprecision on the Intent resolution in
our experiment (section 6.3). Precise and general string analysis in static analysis is nontrivial
and we leave this for future research. For example, we could follow the approaches from prior
research [13, 33]. Moreover, recent work [41] shows that ICC resolution can bene�t from domain
knowledge and probabilistic models, which we could adopt to prioritize inferred ICC destination
choices.
Amandroid does not currently handle Java re�ection, dynamic class loading, and native method

invocation. Adding preliminary support for re�ections and dynamic class loading is similar to
handling ICC in Amandroid. Moreover, [35] has proposed ways to handle Java Re�ection and
dynamic class loading in a reliable way, which we might be able to leverage in the future. Tracking
data �ow through Java Native Interface (JNI) is out of scope for this work.
Amandroid can capture the concurrent execution semantics at the inter-component level as

discussed in section 4.3. However, Android also allows general thread-based concurrent execution
within a component. This is not currently handled by Amandroid. We leave it as future work to
fully account for all possible concurrent executions, by leveraging existing work such as Indus [17].

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:24 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

Amandroid’s data and control �ow analysis depends on the faithfulness of the models, including
the models of the Android environment and its APIs. We designed a DSL8 to let researchers more
easily model library APIs for their analysis purpose. Amandroid currently provides more than
1,000 API models using the DSL, which covers a large portion of the real world Android API usage.
However, due to the size of the Android library and complexity of third party libraries, it remains a
challenge to reliably detect all library API and provide precise and sound model for them. Recent
work [9, 36, 38] o�er approaches to detect third party libraries. Prior work [5] shows that precise
data �ow summary for Android framework can be computed by static analysis. We might be able
to leverage them in Amandroid in the future.

8 RELATED WORK

There has been a long line of works on applying static analysis for Android security problems [6,
12, 18, 21, 24, 26, 28, 31, 34, 37, 42, 43, 56]. Below we describe a few works that are most closely
related to ours.

The design of Amandroid leverages a number of approaches from FlowDroid [6, 24] (e.g., callback
collection algorithm during environment generation), but the two also have a few important
di�erences. FlowDroid does not handle ICC and as such cannot address security issues involving
intent passing among multiple components. FlowDroid builds a call graph based on Spark/Soot [57],
which conducts a �ow-insensitive points-to analysis. FlowDroid then conducts a taint and on-
demand alias analysis based on the above call graph, using IFDS [48, 49] which is �ow- and
context-sensitive. The �ow-insensitivity in the call graph construction may introduce spurious call
edges (false positives), which could impact the analysis precision of the subsequent IFDS analysis.
Amandroid computes the call graph at the same time as the data�ow analysis by computing the
�ow- and context-sensitive points-to facts; thus its callgraph is more precise, which could lead to
fewer false positives in the �nal analysis results. Moreover, FlowDroid does not calculate alias or
points-to information for all objects in a both context- and �ow-sensitive way. This is a design
decision from computing cost concerns [24]. Amandroid calculates all objects’ points-to information
in a both context- and �ow-sensitive way, with reasonable computing cost (ref. Section 6.1). This
enables us to build the generic framework supporting multiple security analyses.

Epicc [43] computes Android Intent call parameters using the same IDE framework as FlowDroid,
by modeling the intent data structure explicitly in the �ow functions. To the best of our knowledge,
Epicc does not use the Intent parameter analysis result to resolve the Intent call targets in the
general case, and has not used the result to perform inter-component data�ow analysis. Amandroid’s
approach to deriving Intent parameters is to simply use the �ow and context-sensitive points-to
information (including that for string objects) already computed in the DFG, without the need
for a separate data �ow analysis just for Intent. Amandroid also uses the Intent call parameter
information to link Intent call sites to call targets, resulting in an DFG that includes data �ow paths
both within and across components. Moreover, recent work [41] shows that domain knowledge
and probabilistic models can be leveraged in Intent destination resolution, which Amandroid could
adopt.
Recently, IccTA [34] and DroidSafe [26] made advancement in the state-of-the-art of Android

app static analysis. IccTA extends FlowDroid and uses IC3 [42] as the Intent resolution engine,
which can now track data �ows through regular Intent calls and returns. However, IccTA is yet to
track the information �ow through remote procedure call (RPC). DroidSafe [26] tracks both Intent
and RPC calls, but does not capture data �ows through “stateful ICC” nor inter-app analysis.

8Grammar of the DSL can be found at https://github.com/arguslab/Argus-SAF/blob/master/org.argus.jawa/src/main/java/

org/argus/jawa/summary/grammar/Safsu.g4

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:25

Recent works [31, 56] explored various approaches to tracking Android inter-app communication
for security vetting. The new component-based analysis of Amandroid as discussed in this paper
supports inter-app analysis naturally (see section 4.5).
Lu et al. [37] uses a static-analysis scheme called CHEX to detect component hijacking problem

in Android, which is reduced to �nding information �ows. CHEX �rst constructs app-splits, each of
which is a code segment reachable from an entry point. It then computes the data-�ow summary
for each split using Wala [23]. The split summaries are linked in all permutations that do not violate
the Android system call sequences and could result in transitive information �ow. Amandroid
computes information �ow in a di�erent way – through the usage of an environment method for
each component that calls the relevant callbacks in the right order (per Android system speci�cation),
and by building the DFG and DDG for the complete app. CHEX does not have the provision to
track data �ow through the ICC channels, which Amandroid does.

Chin et al. [12] �rst systematically studied the attack surface related to Intent. In particular, they
identi�ed problems such as unauthorized intent receipt and intent spoo�ng. They also developed
a static analysis tool which can raise warnings for the above problems in an over-conservative
manner. Their tool ComDroid performs �ow-sensitive, intra-procedural static analysis, and the
paper states that there is a limited inter-procedural analysis that “follows method invocations to a
depth of one method call.” Amandroid performs a full-�edged inter-procedural data-�ow analysis
in a �ow- and context-sensitive way, and also tracks the data �ows over the ICC channels. While
we would like to conduct comparison study between ComDroid and Amandroid, the link to the
ComDroid tool (used to be http://www.comdroid.org) is no longer there.
There has been a large body of work reporting Android app security issues [66, 67], some

of which use static analysis techniques [18, 21, 25, 27]. Those works focus on �nding speci�c
security problems, and the static analyses used do not seem to address some key issues such as
the inter-component nature of Android app’s execution and the precise modeling of Android’s
callback sequences. In contrast, Amandroid is a precise and general inter-component static analysis
framework which can address a large range of security issues in Android apps.

Multiple prior works [15, 44, 64] investigated the root security problems in the Android system
and proposed augmented infrastructures to enforce the given security policy. Recently, SEAn-
droid [50] has been proposed which enforces Mandatory Access Control (MAC) both in the kernel
layer and in the middleware. This system provides a better mechanism for sand-boxing the apps.
However, MAC will not stop the security problems which happen within an app or through the
legitimate ICC channels. In this paper, we assume the sand-boxing (and isolation) of apps by the
Android system is not compromised; thus, our approach is complementary to those prior works.

TaintDroid [19] is a dynamic (runtime) taint-tracking and analysis system to �nd potential misuse
of the user’s private information. All dynamic analyses are subject to evasion attacks. For example,
researchers have shown [45] that Google’s Bouncer [11] can be �ngerprinted and hence evaded by
a well-crafted app. On the other hand, static analysis investigates the code of the app (along with
the app’s manifest, etc.), which determines the runtime behaviors of the app; this makes it attractive
for security vetting. Recently Sounthiraraj et al. [51] showed that static and dynamic analysis can
be combined to achieve more e�ective detection/con�rmation of security problems. Our approach
provides a precise and general static analysis framework that can complement dynamic analyses.

9 CONCLUSIONS

In this paper we presented Amandroid – a general static analysis framework that can be used
for security vetting of Android applications. In particular, Amandroid can precisely track the
control and data �ow of an app across multiple components, and can compute an abstraction

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:26 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

Fig. 8. Building the DFG for foo: The intra-procedural control flow graph (CFG) of foo is extended to a callee,

bar.

of the app’s behavior in the forms of data-�ow graph and data dependence graph. As a general
framework, Amandroid can be easily extended to achieve a number of specialized security analyses.
Our experiment results showed that Amandroid scales well. We also demonstated that Amandroid
can be readily applied to e�ectively address multiple specialized security problems. Our experiment
results showed that Amandroid out-performs existing static analysis tools for Android apps.

APPENDIX

The Basic DFG Building Process.
A static analyzer simulates the program and keeps track of the fact sets, until a �xed point is

reached. The convergence to a �xed point (analysis termination) is guaranteed as long as the �ow
equations are monotone, and the number of facts is �nite, which hold for Amandroid’s analysis. For
a given app, it contains a �nite number of object creation sites and variables/�elds (and as typically
done, elements of an array are summarized as one); moreover, we keep tracks of calling contexts
up to a �nite number k.
Amandroid builds the DFG by �owing the points-to facts from the program’s entry points.

Here the program is the IR of the app’s dex code augmented with the environment methods as
discussed in Section 3.2. Unlike Java applications, there is no “main” method in an Android app;
every component could be the starting point of an app. Our component-based environment model
captures the full life cycle of a component and all of its possible execution paths, including those
due to interacting with other components. Thus, if we assume one particular execution path starts
from component C, we can use C’s environment method EC as the program’s entry point. To include
all possible execution paths from all possible components, we do this for every component in the
app, yielding multiple DFGs. Formally, let C be a component, the DFG from C is denoted DFG(EC)

where EC is the environment method of C, and is a tuple de�ned as the following.

DFG(EC) ≡ ((N ,E), {entry (n) | n ∈ N }) ,

where N and E are the nodes and edges of the inter-procedural control �ow graph starting from
EC (denoted ICFG(EC)). entry (n) is the entry set of the statement associated with node n. Each
DFG(EC) captures the execution that starts from component C, and may involve other components
due to ICC. Each statement node is annotated with the statement entry set (the exit set is not shown
for presentation sake). In this example, Amandroid starts building the DFG from the entry point
method foo with an empty fact set. Amandroid then simulates the program statically based on each
statement’s semantics and transforms the fact sets along the way based on the �ow equation (1).

Figure 8 illustrate one example. At a control-�ow join point, the exit fact sets from all incoming
edges are unioned (e.g., at L7); facts such as 〈v2, 2〉 and 〈v2, 5〉 coming from the di�erent branches
accumulate in entry (7). Similarly, one can compute entry (8). At this point, Amandroid needs to

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:27

Algorithm 2 Building Data Flow Graph (DFG)

Require: The entry point procedure, EP .
Ensure: DFG(EP)
1: procedure BuildDfg(EP)
2: icfg ≡ (N , E) ← empty graph;
3: addCFG(icfg, CFG(EP));
4: ι ← initial fact set;
5: entry← emptyMap;
6: worklist ← emptyList;
7: entry

(

EntryNodeEP
)

← ι ;
8: worklist ← worklist :: EntryNodeEP ;
9: whileworklist , empty do
10: n ← get (and deque) head from worklist;
11: nodes ← processNode(icfg, n);
12: worklist ← worklist ::: nodes;

13: return (icfg, entry);

Algorithm 3 processNode: Pushing facts to successors

Require: ICFG, icfg ≡ (N , E) and a node, n ∈ N
Ensure: n’s successor nodes whose entry are updated.
1: procedure processNode(icfg, n)
2: tempList ← empty ;
3: if n is an EntryNode or a ReturnNode then
4: for all p ∈ successors(n) do
5: entry (p) ← entry (p) ∪ entry (n);
6: tempList ← tempList :: p ;

7: else if n is an ExitNode then
8: for all p ∈ successors(n) do
9: passRequiredFactsToCaller (n, p);
10: if p gets any new fact then
11: tempList ← tempList :: p ;

12: else if n is a CallNode or a RegularNode then
13: if visit (icfg, n) = true then
14: tempList ← tempList ::: successors(n);

15: return tempList;

16: procedure visit(icfg, n)
17: if n is a CallNode then
18: (fMapForCs, factsToR) ← reslvCall (icfg, n);
19: update callees’ EntryNodes with fMapForCs;
20: update ReturnNode(n) with factsToR;
21: else if n is an RegularNode then
22: for all p ∈ successors(n) do
23: entry (p) ← entry (p) ∪ exit (n);

24: if any p ∈ successors(n) gets any new fact then
25: return true ;

26: return f alse ;

27: procedure reslvCall(icfg, n) ⊲ n is a CallNode
28: calleeSet ← getCallees(entry (n), callSig(n));
29: for all M ∈ calleeSet do
30: if (EntryNode

M
< N) then

31: addCFG(icfg, CFG(M));
32: E ← E ∪ (n, EntryNode

M
);

33: E ← E ∪ (ExitNodeM , ReturnNode(n));

34: fToCallees ← empty;
35: factsMapForCallees ← emptyMap;
36: for all p ∈ successors(n) do
37: factsToCallee ← �lterFunc(n, p, entry (n));
38: factsMapForCallees(p) ← factsToCallee;
39: fToCallees ← fToCallees ∪ factsToCallee;

40: factsToReturn← exit (n) \ fToCallees;
41: return (factsMapForCallees, factsToReturn);

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:28 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

resolve the target for L8’s virtual method invocation with static type A0. The �rst argument of the
call instruction, v2, is the receiver object. Since we now have calculated the possible points-to
values of v2 — instance 2 or instance 5, we can resolve the possible call targets precisely: A1.bar
for instance 2 and A2.bar for instance 5 (because both A1 and A2 override A0.bar). This shows the
advantage of doing a precise points-to analysis concurrently with ICFG building — not only can
we have more precise information on the call targets, but also it allows us to �ow more accurate
facts to the di�erent call targets. All of these increase the precision and can potentially reduce the
number of false alarms in the analysis results.
As shown in Figure 8, a call statement contributes a pair of CallNode and ReturnNode to the

ICFG. The CallNode connects to the callee’s EntryNode while the callee’s ExitNode connects to the
ReturnNode. In transferring facts between the caller and the callee, the variable-facts need to be
remapped to the formal parameters of the callee (e.g., v2 in the caller maps to v4 in the callee). This
should be restored when the control returns to the caller. Only heap-facts reachable from the call
parameters are passed to the callee. The unreachable heap-facts as well as unrelated variable-facts
are transferred to the ReturnNode directly to improve e�ciency. In the example of L8’s method
invocation, there is one variable-fact 〈v9, 6〉 which is unrelated to both arguments v2 and v3. The
�ow of such fact (which is unrelated to any callee) is represented as a double-head arrow from the
CallNode to the ReturnNode. Similarly, there can be some facts at the callee side that are unrelated
to the caller (e.g., callee’s local variables and temporary objects), and we �lter them out at the
callee’s ExitNode to improve e�ciency.

Consider the data�ow analysis for A1.bar or A2.bar, which is a callee for L8’s method invocation.
Amandroid tracks the entry of each statement of A1.bar (or A2.bar). We observe that entry(Return
8) contains heap-facts which show that �eld f2 of Instance 2 points to the String “abc”. This is
the e�ect of L10. It is interesting to see that this is not true for the same �eld (i.e., f2) of Instance
5 because no assignment like L10 happens inside A2.bar.

Now, we can get entry (9), and continue to process the next call similarly. The process is similar
to what we did for L8, except that we have to handle the possibility of a null receiver (because there
is no fact associated with v2.f1 for 〈v2, 5〉). For a virtual method statement, if the facts show that
the receiver variable maybe null, then we do not process this particular instance; instead, we only
propagate the non-null receiver instances (if any) to the callee and �ag the call site as a possible
runtime error.

Algorithm for Building DFG. The algorithm for the DFG building process is formally presented as
Algorithm 2. This is a �xed-point algorithm (ref. the while loop from L9 to L13), which tracks what
points-to facts reach each statement from the given entry point (EP). The core of Algorithm 2 is L11,
which processes di�erent type of nodes in the control �ow graph, and this is formally elaborated in
Algorithm 3. Algorithm 3 presents how to process each type of node (e.g., CallNode, ReturnNode,
etc.). As an example, if it’s a CallNode, the ICFG will be expanded by including the callee graph
based on the points-to facts �owing there.

ACKNOWLEDGMENTS

We express our gratitude to Venkatesh Prasad Ranganath for contributing many ideas to this work.
This research was partially supported by the U.S. National Science Foundation under grant no.
0644288, 0954138, 1018703, 1717862, and 1718214, and the U.S. Air Force O�ce of Scienti�c Research
under award no. FA9550-09-1-0138. Any opinions, �ndings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily re�ect the views of the
above agencies.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:29

REFERENCES

[1] Android documentation: Intent and Intent Filter. http://developer.android.com/guide/components/intents-�lters.html.

[2] akka. 2016. Actors. http://wala.sourceforge.net/wiki/index.php/UserGuide:CallGraph. (2016).

[3] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo: Collecting Millions of Android

Apps for the Research Community. In Proceedings of the Mining Software Repositories (MSR).

[4] Andrew W. Appel. 1998. Modern Compiler Implementation in Java. Cambridge University Press.

[5] Steven Arzt and Eric Bodden. 2016. StubDroid: automatic inference of precise data-�ow summaries for the android

framework. In Proceedings of the IEEE ICSE. 725–735.

[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware

Taint Analysis for Android Apps. In Proceedings of the ACM PLDI.

[7] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout: Analyzing the Android permission

speci�cation. In Proceedings of the ACM CCS.

[8] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven Arzt, Siegfried Rasthofer, and Eric

Bodden. 2015. Mining Apps for Abnormal Usage of Sensitive Data. In Proceedings of the IEEE ICSE.

[9] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library detection in Android and its security

applications. In Proceedings of the ACM CCS.

[10] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen, Jaeyeon Jung, Suman Nath, Rui Wang, and

David Wetherall. 2014. Brahmastra: Driving Apps to Test the Security of Third-party Components. In Proceedings of

the 23rd USENIX Conference on Security Symposium. 1021–1036.

[11] Google Bouncer. 2012. http://googlemobile.blogspot.com/2012/02/android-and-security.html. (2012).

[12] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011. Analyzing inter-application communica-

tion in Android. In Proceedings of the ACM Mobisys.

[13] Aske Christensen, Anders Møller, and Michael Schwartzbach. 2003. Precise analysis of string expressions. Static

Analysis (2003), 1076–1076.

[14] Cisco. 2014. Cisco 2014 Annual Security Report. http://www.cisco.com/web/o�er/gist_ty2_asset/Cisco_2014_ASR.pdf.

[15] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich. 2012. CRePE: A System for Enforcing Fine-Grained Context-

Related Policies on Android. Information Forensics and Security, IEEE Transactions on 7, 5 (2012), 1426–1438.

[16] DroidBench. 2015. https://github.com/secure-software-engineering/DroidBench.

[17] MatthewBDwyer, JohnHatcli�,MatthewHoosier, Venkatesh Ranganath, Robby, and ToddWallentine. 2006. Evaluating

the e�ectiveness of slicing for model reduction of concurrent object-oriented programs. In Proceedings of the TACAS.

[18] Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. 2013. An empirical study of cryptographic

misuse in Android applications. In Proceedings of the ACM CCS.

[19] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol Sheth. 2010.

TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones.. In Proceedings

of the USENIX OSDI.

[20] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth.

2014. TaintDroid: An information �ow tracking system for real-time privacy monitoring on smartphones. Commun.

ACM 57, 3 (2014), 99–106.

[21] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and Matthew Smith. 2012. Why

Eve and Mallory love Android: An analysis of Android SSL (in) security. In Proceedings of the ACM CCS.

[22] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner. 2011. A survey of mobile malware

in the wild. In Proceedings of the ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.

[23] Stephen Fink and Julian Dolby. 2012. WALA–The TJ Watson Libraries for Analysis. http://wala.sf.net/.

[24] Christian Fritz, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves le Traon, Damien

Octeau, and Patrick McDaniel. 2013. Highly Precise Taint Analysis for Android Application. Technical Report. EC

SPRIDE.

[25] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. 2012. AndroidLeaks: Automatically detecting potential

privacy leaks in Android applications on a large scale. In Proceedings of the International Conference on Trust and

Trustworthy Computing.

[26] Michael I Gordon, Deokhwan Kim, Je� H Perkins, Limei Gilham, Nguyen Nguyen, and Martin C Rinard. 2015.

Information Flow Analysis of Android Applications in DroidSafe. In Proceedings of the NDSS. Citeseer.

[27] Michael Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. 2012. Systematic Detection of Capability Leaks in Stock

Android Smartphones. In Proceedings of the NDSS.

[28] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad Reza Sadeghi. 2012. Unsafe exposure analysis of mobile in-app

advertisements. In Proceedings of the ACM Conference on Security and Privacy in Wireless and Mobile Networks.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:30 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby

[29] John Hatcli�, Patrice Chalin, Jason Belt, et al. 2013. Explicating symbolic execution (xSymExe): An evidence-based

veri�cation framework. In Proceedings of the IEEE ICSE. 222–231.

[30] ICC-Bench. 2017. https://github.com/fgwei/ICC-Bench.

[31] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. 2014. Android taint �ow analysis for app sets.

In Proceedings of the 3rd ACM SIGPLAN International Workshop on the State of the Art in Java Program Analysis. 1–6.

[32] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using Spark. In Proceedings of the Compiler

Construction.

[33] Ding Li, Yingjun Lyu, Mian Wan, and William GJ Halfond. 2015. String analysis for Java and Android applications. In

Proceedings of the ACM FSE. 661–672.

[34] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric

Bodden, Damien Octeau, and Patrick Mcdaniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android

Apps. In Proceedings of the IEEE ICSE.

[35] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. Droidra: Taming re�ection to support

whole-program analysis of android apps. In Proceedings of the ACM ISSTA.

[36] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui Xue, and Wei Huo. 2017. Libd: Scalable

and precise third-party library detection in Android markets. In Proceedings of the IEEE ICSE.

[37] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX: Statically vetting Android apps for

component hijacking vulnerabilities. In Proceedings of the ACM CCS.

[38] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: fast and accurate detection of third-party

libraries in Android apps. In Proceedings of the IEEE ICSE.

[39] McAfee. 2017. Trojans, Ghosts, and More Mean Bumps Ahead for Mobile and Connected Things. https://www.mcafee.

com/us/resources/reports/rp-mobile-threat-report-2017.pdf.

[40] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 1999. Principles of program analysis. Springer.

[41] Damien Octeau, Somesh Jha, Matthew Dering, Patrick McDaniel, Alexandre Bartel, Li Li, Jacques Klein, and Yves

Le Traon. 2016. Combining static analysis with probabilistic models to enable market-scale android inter-component

analysis. In Proceedings of the ACM POPL, Vol. 51. 469–484.

[42] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick McDaniel. 2015. Composite Constant

Propagation: Application to Android Inter-Component Communication Analysis. In Proceedings of the IEEE ICSE.

[43] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon.

2013. E�ective Inter-component Communication mapping in Android with Epicc: An Essential Step towards Holistic

Security Analysis. In Proceedings of the USENIX Security Symposium.

[44] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. 2012. Semantically rich application-

centric security in Android. Security and Communication Networks 5, 6 (2012), 658–673.

[45] Nicholas J Percoco and Sean Schulte. 2012. Adventures in Bouncerland. Black Hat USA (2012).

[46] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and Giovanni Vigna. 2014. Execute this!

Analyzing unsafe and malicious dynamic code loading in Android applications. In Proceedings of the NDSS. 23–26.

[47] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Harvesting runtime values in android

applications that feature anti-analysis techniques. In Proceedings of the Annual Symposium on Network and Distributed

System Security (NDSS).

[48] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise interprocedural data�ow analysis via graph reachability.

In Proceedings of the ACM POPL.

[49] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise interprocedural data�ow analysis with applications to

constant propagation. Theoretical Computer Science 167, 1 (1996), 131–170.

[50] Stephen Smalley and Robert Craig. 2013. Security enhanced (SE) Android: Bringing �exible MAC to Android. In

Proceedings of the NDSS.

[51] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin, and Latifur Khan. 2014. SMV-HUNTER: Large Scale,

Automated Detection of SSL/TLS Man-in-the-Middle Vulnerabilities in Android Apps. In Proceedings of the NDSS.

[52] Symantec. 2017. Internet Security Threat Report. https://www.symantec.com/content/dam/symantec/docs/reports/

istr-22-2017-en.pdf.

[53] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015. CopperDroid: Automatic Recon-

struction of Android Malware Behaviors. In Proceedings of the NDSS.

[54] Hariharan Thiagarajan, John Hatcli�, Jason Belt, et al. 2012. Bakar Alir: Supporting Developers in Construction of

Information Flow Contracts in SPARK. In Proceedings of the IEEE SCAM. 132–137.

[55] TrendMicro. 2017. In Review: 2016’s Mobile Threat Landscape Brings Diversity, Scale, and Scope. https://blog.

trendmicro.com/trendlabs-security-intelligence/2016-mobile-threat-landscape/.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Amandroid 1:31

[56] Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-an, Gregg Rothermel, and Jackson Dinh. 2017. An e�cient, robust,

and scalable approach for analyzing interacting android apps. In Proceedings of the IEEE ICSE. 324–334.

[57] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville, and Vijay Sundaresan. 2000.

Optimizing Java bytecode using the Soot framework: Is it feasible?. In Proceedings of the Compiler Construction.

[58] Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick Tague. 2014. A5: Automated

Analysis of Adversarial Android Applications. In Proceedings of the SPSM. 39–50.

[59] WALA. 2014. WALA documentation: CallGraph. (2014).

[60] Rui Wang, Luyi Xing, XiaoFeng Wang, and Shuo Chen. 2013. Unauthorized origin crossing on mobile platforms:

Threats and mitigation. In Proceedings of the ACM CCS.

[61] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep Ground Truth Analysis of Current

Android Malware. In Proceedings of the DIMVA. Springer, Bonn, Germany.

[62] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2014. Amandroid: A precise and general inter-component data

�ow analysis framework for security vetting of android apps. In Proceedings of the ACM CCS. Scottsdale, AZ.

[63] Wikipedia. 2016. Actor model. https://en.wikipedia.org/wiki/Actor_model. (2016).

[64] Rubin Xu, Hassen Saïdi, and Ross Anderson. 2012. Aurasium: Practical policy enforcement for Android applications.

In Proceedings of the USENIX Security Symposium.

[65] Lok-Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for

Dynamic Android Malware Analysis.. In Proceedings of the USENIX Security Symposium. 569–584.

[66] Yajin Zhou and Xuxian Jiang. 2012. Dissecting Android malware: Characterization and evolution. In Proceedings of the

IEEE SP.

[67] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get o� of My Market: Detecting Malicious Apps

in O�cial and Alternative Android Markets. In Proceedings of the NDSS.

ACM Transactions on Privacy and Security, Vol. 1, No. 1, Article 1. Publication date: January 2018.

