Hybrid Analysis of Android Apps for Security
Vetting using Deep Learning

Dewan Chaulagain, Prabesh Poudel,
Prabesh Pathak, Sankardas Roy
Department of Computer Science

Bowling Green State University
Bowling Green, Ohio, USA
dewanc, pprabes, ppathak, sanroy @bgsu.edu

Abstract—The phenomenal growth in use of android devices
in the recent years has also been accompanied by the rise of
android malware. This reality warrants development of tools and
techniques to analyze android apps in large scale for security
vetting. Most of the state-of-the-art vetting tools are either based
on static analysis or on dynamic analysis. Static analysis has
limited success if the malware app utilizes sophisticated evading
tricks. Dynamic analysis on the other hand may not find all
the code execution paths, which let some malware apps remain
undetected. Moreover, the existing static and dynamic analysis
vetting techniques require extensive human interaction. To ad-
dress the above issues, we design a deep learning based hybrid
analysis technique, which combines the complementary strengths
of each analysis paradigm to attain better accuracy. Moreover,
automated feature engineering capability of the deep learning
framework addresses the human interaction issue. In particular,
using lightweight static and dynamic analysis procedure, we
obtain multiple artifacts, and with these artifacts we train the
deep learner to create independent models, and then combine
them to build a hybrid classifier to obtain the final vetting
decision (malicious apps vs. benign apps). The experiments show
that our best deep learning model with hybrid analysis achieves
an area under the precision-recall curve (AUC) of 0.9998. In
this paper, we also present a comparative study of performance
measures of the various variants of the deep learning framework.
Additional experiments indicate that our vetting system is fairly
robust against imbalanced data and is scalable.

Index Terms—Android App, Security Vetting, Deep Learning,
LSTM, Classifier, Static Analysis, Dynamic Analysis

I. INTRODUCTION

Android ecosystem has been growing at a tremendous rate,
which currently occupies about 74% of worldwide mobile OS
market share [1]. This growth in use of android devices and
android apps not only attracted regular users but also lured
attackers to develop malicious apps. Discovery of malware
apps being present in Google Play and other app stores make
news headlines regularly. The growth in android malware seen
over the years warrants the need of a vetting system that can
classify apps as malicious or benign. Such a vetting system can
be deployed in an app store, or can be used as a stand-alone
system on a smart phone.

Static analysis aims to capture the behavior of the android
app under scrutiny without executing the app. State-of-the-
art static analysis tools like Flowdroid [2], Amandroid [3],

Doina Caragea
Department of Computer Science
Kansas State University
Manhattan,

Kansas, USA
dcaragea@ksu.edu

Guojun Liu, Xinming Ou
Computer Science and Engineering
University of South Florida
Tampa, Florida, USA
guojunl@mail.usf.edu,
xou@ust.edu

etc. search for a (control/data flow) pattern (representing in-
formation leakage, efc.) in the app code. A static analysis tool
typically builds Control Flow Graph (CFG), Data Flow Graph
(DFG), and more, which could be computationally intensive
tasks [4]. Furthermore, static analysis typically suffers from
high rate of false alarms, and it has limited success if the
app utilizes sophisticated evading techniques such as code
obfuscation and dynamic loading. On the other hand, in
dynamic analysis, an emulator is used to execute the android
app and record the runtime behaviors, which are used to detect
possible malciousness. Dynamic analysis overcomes many of
the problems associated with static analysis, but it may fail to
explore all the code execution paths, which leads to missed
alarms. Moreover, a malicious app may recognize that it is
being executed in an emulator (i.e., not on a real phone) and
could hide the malicious part of the app [4], and thus may
escape vetting.

Hybrid analysis (which involves both static and dynamic
analysis) is more effective as it can leverage the comple-
mentary strengths of both type of analyses. For instance, a
malicious app which turns off its malicious feature might
evade dynamic analysis but static analysis can still extract the
static features (e.g., API-calls as seen in the app code) of the
app and detect its maliciousness. On the other hand, apps with
obfuscated code or dynamic code loading behavior (which
might evade static analysis) could be tracked by dynamic
analysis. However, the capability of hybrid analysis remains
limited if its component static analysis or dynamic analysis has
following limitations: (a) it could be computationally intensive,
and (b) it relies on human expertise to design the control/data
flow-based signature [3] of a malware app.

To address the above limitations, the research community
[5] [6] has recently shown immense interest in leveraging
machine learning to design a vetting system. The main idea
is to gather static and dynamic features of an app to feed
to a machine learning (ML) unit for the app classification.
Unfortunately, as the feature set which is used by the ML unit
(for app classification) are manually engineered, the reliance of
the vetting system on human expertise remains. Furthermore,
with rapidly changing android ecosystem, it becomes virtually
impossible for a human specialist to timely obtain new ma-

licious signatures/patterns. Literature reflects that the vetting
tools that rely on traditional machine learning implementation
lose their efficacy over time [7]. To keep up with the rapidly
changing android ecosystem, we need a system that can learn
features by itself instead of depending on a human specialist.

Recent advancement in deep learning (DL) offers automated
feature engineering [8], which shows promise of identifying
the features from the raw dataset without applying the domain
knowledge. Furthermore, unlike ML, deep learning models’
performance does not plateau with growth in data size [8]
[9]. With increased computational power and algorithmic
improvements, use of deep learning might lead to multiple
benefits such as higher classification accuracy (precision/re-
call), coping up with regular changes in android ecosystem,
and more [10]. Furthermore, traditional ML models are not
best suited for learning from sequencial artifacts (e.g., a time
series like the executed app code sequence). In contrast, DL
technology Recurrent Neural Networks (RNN) can accept
sequential artifacts, and attempts to maintain (i.e., remember)
states for an arbitrarily long context window.

However, learning long-term dependencies in a sequence
(e.g., time series) is not possible with traditional RNN that
uses gradient descent based learning [11] [12]. The problems
of failing to track long-term dependencies and vanishing/ex-
ploding gradient might be resolved (to some extent) by using
Long Short Term Memory (LSTM) [12]. LSTM [13] is a RNN
architecture that comprises of multiple recurrently connected
memory blocks. In the current work, we use the LSTM
technology and its variants (e.g., Bi-directional LSTM and
Attention-based Bi-directional LSTM) to design the classifier.

In particular, we design a new hybrid analysis based security
vetting system for android apps, which leverages (lightweight)
static and dynamic analysis. Figure 1 presents the high level
view of our system design. On the static analysis side, we
obtain API-calls present in the app code as artifacts and use
them to train a LSTM classifier (or its variant). On the dynamic
analysis side, we collect (via an emulator) system calls invoked
by the app during runtime as the artifacts and feed them to a
similar LSTM classifier. Note that API-calls (and system calls)
are quasi-sequential (and sequential, respectively) artifacts. As
the input dataset is sequential in nature, we use LSTM and
its variants to learn from such sequences [13].We merge the
vetting decision of static analysis side and that of the dynamic
analysis side via a simple (probability) aggregation scheme as
shown in Figure 1. Our experimental results show that this
hybrid approach makes the classification accuracy even better.
Moreover, we experiment with variants of LSTM models such
as bidirectional LSTM (Bi-LSTM), attention-based bidirec-
tional LSTM (Attn-BiLSTM) and compare the performance
results. Furthermore, we compare the performance of these DL
models with prior models based on traditional ML algorithms.

The main contributions of this paper are as follows: (i)
We design and implement a DL-based hybrid classifier for
security vetting of Android apps, which leverages automated
feature engineering as well as the complimentary strengths
of static and dynamic analysis. (ii) Via extensive experiments,

Extract Static API-calls LSTM/ Bi-

A o)
X LSTM/ Attn-
~
/ Artifacts BiLSTM models Avg
A/ ’
'F (P Probg,,
\ ~
\ System ‘
\ Collect calls LSTM/ Bi- . Proby,,
Dynamic LSTM/ Attn- N

N

Class with higher
Avg. Prob. is the
final prediction.

Artifacts BiLSTM models

Fig. 1. System design of the hybrid classifier for Android app vetting:
Prediction probabilities from both the static and dynamic artifacts-based deep
learning (DL) models are used to derive the final prediction.

we evaluate the performance of the vetting system. The results
show that the DL models based on static artifacts only (or on
dynamic artifacts only) yield high precision and recall. The
classification accuracy is further enhanced with the hybrid
classifier, which yields near-to-perfect accuracy with area
under the precision-recall curve (AUC) being 0.9998. (iii)
The experimental results show that among the variants of
the LSTM technology used Attn-BiLSTM performs best. (iv)
Additional experiments indicate that our vetting system is
fairly robust against imbalanced data and it scales with dataset
size.

II. BACKGROUND

As in the literature, by system calls we refer to low-level
functions implemented in the kernel. In particular, OS-level
services such as hardware related services (e.g., accessing a
memory location, a file, efc.), execution and creation of new
process, efc. are implemented in the kernel, and an app can
avail such a service by invoking a system call. Obtaining
such system calls invoked by an app can might provide real
(regardless of code obfuscation, if any) picture of what the
app does.

Machine learning frameworks build mathematical models
using training data to perform classification tasks. Word-
s/strings input need to be represented numerically, as vectors,
before feeding them to a ML/DL model. The representation
of a ML/DL’s input feature as a vector comprising of real
numbers is called feature vector. The process of mapping a
feature to a vector of a certain dimension is called word embed-
ding. Frequency count of words, one hot encoding, TF-IDF
vectorization, etc. are methods to do this. Mikolov et al. [14]
compared aforementioned methods with embedding words to
vector space using Continuous Bag of Words (CBOW) and
Skipgram algorithms. CBOW or Skipgram achieve state-of-
the-art performance, preserving the semantic similarity among
the words/strings. In the current work, we use the gensim [15]
library’s word2vec API to perform word embedding.

An LSTM network [13] is a recurrent neural network
(RNN), whose architecture consists of a recurrent cell that
enables information to be passed from one time step to the next
one. Similar to an RNN, an LSTM unfolds into a sequence of
recurrently connected memory blocks. The main difference is
that the LSTM cell contains a cell state (long term memory),
in addition to the hidden state (short term memory), and

also three gates (an input gate, a forget gate and an output
gate). Each gate is associated with a sigmoid activation and
a point-wise multiplication operation[16]. The gates control
which information from the previous cell state is to be retained
or forgotten, which information is to be updated, and which
information is to be output as the current cell state.

Bi-LSTM extends the single forward direction layer of
basic LSTM by using another LSTM layer where hidden states
flow in reverse temporal order. With Bi-LSTM, the model
can learn from all available past and future information [17].
Using depth concatenated hidden states of both forward LSTM
and backward LSTM, it is possible to learn from both the past
and the future sequences [17].

A Bi-LSTM’s output states can be fed to a fully connected
layer to learn the attention weights, which helps the model
focus on the most important components of the input with
respect to the output. Use of such attention weights with the
output states of Bi-LSTM yields Attn-BiLSTM. The learned
attention weights of Attn-BiLSTM can also be potentially
used for interpretation of the important input components. In
this way, using Attn-BiLSTM, we can focus on the important
features obtained from the Bi-LSTM instead of focusing on
all outputs. We experiment with some of these variations of
LSTM.

III. RELATED WORK
A. Static Analysis and Dynamic Analysis

FlowDroid [2], Amandroid [3], DroidSafe [18], efc. are
examples of the state-of-art static analysis tools for security
vetting of Android apps. These tools typically track control
and data flow in the app code and match the findings with
a known set of malicious flow patterns. However, manual
modelling of malicious signatures relies on human expertise
whereas tracking control and data flows are computationally
expensive operations both in terms of time and memory. On
the other hand, TaintDroid [19] is a dynamic analysis tool.

Literature [20] [7] suggests that use of static or dynamic
artifacts to train machine learning models for classifying mali-
cious apps and benign apps can yield better results. Moreover,
with feature engineering capability of deep neural networks,
human hours devoted to manual modelling of malicious sig-
natures can be avoided. Furthermore, android security experts
cannot keep up with the rapidly changing android ecosystem.
To keep up with changing android ecosystem and to save
human hours, machine learning approaches were introduced.

B. Machine Learning and Deep Learning

MAMADROID [7] uses a machine learning classifier using
the features obtained by abstracting the API-calls collected
from the call graph of the android app. The authors claim
it to be better performing than DROIDAPIMINER [21] which
uses frequency of API-calls used by the app. However, when
a one-time trained MAMADROID model is used to perform
classification over the years, its efficacy decreases [7].

Drebin [6] uses any feature that could be obtained from an
app’s source code and Manifest file as artifact, which results

in over 500,000 static features. Standard machine learning
algorithms are trained based on these features to perform
android apps classification. Roy et al. [5] demonstrated that by
selecting only 471 features out of the 500, 000 static features
used by Drebin, similar results can be obtained.

Success with use of APICalls and machine learning models
also motivated researchers to use other features such as
simplified bytecode. Xu et al. [22] used both traditional
machine learning models and deep learning models to perform
android classification. Authors claim that the use of stacked
LSTM on bytecode level helps learn bytecode semantics at
app level.

Karbab et al. [20] use API-calls in their deep learning
(convolutional neural network) based android malware detec-
tion framework MalDozer. Authors claim that MalDozer is
resilient to the ordering of API calls of an app.

Furthermore, Hou e al. [23] built a vetting system known
as Deep4MalDroid, which uses system calls. The system calls
were used to construct a graph with weighted nodes and
edges. The constructed graph based features serve as inputs for
classification using Stacked AutoEncoders (SAEs). Authors
claim that their deep learning model with three layers of SAEs
outperforms other existing shallow learning models.

LSTM network can only learn from past data/sequences
and not from future sequences [24]. Schuster et al. [24]
proposed Bi-LSTM to learn from all available past and future
information. Further, Zhou et al. [17] demonstrated the
effectiveness of Attn-BiLSTM on the SemEval-2010 relation
classification task.

Let us summarize the similarity and difference of our work
with/from others. Similar to [20] [7], we use API-calls as
the static analysis artifacts. However, unlike [20] [7], we use
LSTM and variants of LSTM to build our models. Similar
to Deep4MalDroid [23], our work utilizes system calls as
dynamic artifacts. However, we use the original sequence of
system calls whereas Deep4MalDroid uses a weighted system
call graph. Another big difference of our approach from these
prior works is that prior works used either static analysis or
dynamic analysis but not a hybrid one.

IV. APPROACH

In this section, we first present a motivating example to
illustrate the usage of API-calls and system calls as artifacts.
We then describe in high level our overall approach to doing
hybrid analysis.

A. Motivating Example

Let us consider an example app that steals a SMS message
from the local storage (Content Provider associated with SMS
inbox) and leaks it to a remote server via the internet. Listing 1
illustrates a (Java) code fragment of the app, showing a SMS
message getting leaked from a source point to a sink point
(remote server).

We consider the API-calls in the app code as static artifacts.
We consider an invocation of procedure p (say at code line
number z) as an API-call if the definition of p is not available

in the app code (e.g., if p is an Android library procedure). Ta-
ble I lists the API-calls which are invoked in onStartCommand
procedure. Note that the APIs are presented in JAWA [3] code
(decompiled byte-code similar to Smali code). For the sake of
clarity, in Table I, we do not show the arguments and return
types associated with the API-calls. Note that invocation of
uploadSms procedure in L9 (in Listing 1) is not an API-call
because the definition of uploadSms procedure is present in
the app’s code. So, uploadSms invocation does not show up
in Table L.

TABLE I
API-CALLS INVOKED WITHIN ONSTARTCOMMAND PROCEDURE
Code JAWA | API-calls
Block # | Line #
1 c9f8 Landroid/net/Uri;.parse
1 cal2 Landroid/content/ContentResolver;.query
1 cala Landroid/database/Cursor;.moveToFirst
2 ca2a Landroid/.../Cursor;.getColumnIndexOrThrow
2 ca32 Landroid/database/Cursor;.getString
3 cad2 Ljava/lang/String;.replace
3 ca50 Landroid/app/Service;.onStartCommand

public int onStartCommand(Intent i, int flags,int startId){
L2 : String str = "";
L3 : Uri inboxURI = Uri.parse("content://sms/inbox");
L4 : Cursor cur = getContentResolver.query(inboxURI,null,...)
L5 : if (cur.moveToFirst()){
L6 : str = cur.getString(cur.getColumnIndexOrThrow("body"));
L7 : }
L8 : str=str.replace(" ","_");
L9 : uploadSms(str);
L10: return super.onStartCommand(intent,flags,startId);

Listing 1. A code fragment from the SMS-stealer app.

The motivation of using API-calls as artifacts is that the
list of API-calls may constitute a signature of what the app
does. In Table I, we see that ContentResolver is queried
and a cursor is obtained to extract string data from the SMS
inbox, which is then modified using the replace API-call.
Similarly, we list API-calls (not shown here due to brevity)
corresponding to uploadSms method, which suggests that a
HttpURLConnection is set up and the SMS string is added to
the URL header. Individually, any of these API-calls may not
bear much information, but the whole sequence of API-calls
can represent a signature of the app (e.g., SMS leakage).

Absolutely speaking, Table I does not represent a flat se-
quence of API calls in onStartCommand procedure. In reality,
these API-calls are in multiple code blocks (as defined in the
literature [20]). So, real execution might result in a different
order of the code blocks (though inside a code block the order
is fixed). To track the true sequence of code-blocks, we need
to build the (inter-procedural) control flow graph (CFG) of
the whole app, which is computationally expensive. In this
paper, we limit ourselves to lightweight static artifacts, and

we consider the list of API-calls as they appear in the code of
a procedure. This results in us collecting a quasi-sequence of
API-calls, where the true sequence is maintained only within
a code block.

In nutshell, the static artifacts of an apk is represented as
a text file that contains one paragraph of text (where an API-
call is considered as a word) for each (Java) class of the app.
Furthermore, if a class ¢ has a procedure p, then the API-calls
of p makes one sentence in the corresponding paragraph of
c. Standard delimiter are used to separate neighboring words,
sentences, or paragraphs.

On the dynamic analysis side, we consider system calls
as the artifacts. To demonstrate the usage of system calls
as artifacts, let us consider another example app named
ReadFromWeb, which attempts to read a webpage at a given
URL and writes it to a local file. The app uses Java library’s
URL.openStream(), BufferedReader and InputStreamReader
functionalities to access the webpage as a string, and then
uses PrintWriter.println to write it to a file. Table II presents
the system calls as recorded by Linux utility tool Strace. For
the sake of clarity, in Table II, we use ‘. . ." to replace lengthy
arguments.

TABLE II
SYSTEM CALLS INVOKED ON EXECUTION OF READFROMWEB APP

execve(“/usr/bin/java”, [“java”, “ReadFromWeb”], . . .) =0
brk(NULL) = 0x17e0000

access(“/etc/ld.so.nohwcap”, F_OK) = -1 ENOENT
readlink(“/proc/self/exe”, “jvm/java-8-oracle/jre/b”. . ., 4096) = 39
... (more)

stat(*“/ust/lib/jvm/java-8-oracle/.../libjvym.so”, {st_mode=...}) =0
futex(0x7f137d1080c8, FUTEX_WAKE_PRIVATE, 2147483647) = 0
openat(AT_FDCWD, . ..) =3

read(3, “\177ELF\O\O\O\O\O”, . . ., 832) = 832

fstat(3, {st_mode=S_IFREGIO753, st_size=17022752, ...}) =0
mmap(NULL, . . ., 3) = 0x7f137bb30000
mprotect(0x7f137¢812000, 2097152, PROT_NONE) = 0
mmap(0x7f137¢cal2000, . . ., 0xce2000) = 0x7f137cal12000
mmap(0x7f137¢cad9000, . . ., -1) = 0x7f137cad9000

close(3)

... (more)

futex(0x7f137d7449d0, FUTEX_WAIT, 9588, NULL) = 0
exit_group(0) = ?

From Table II we observe that the Dalvik bytecode is
passed to the execve function for execution. Then heap is
extended by invoking brk function and relevant library files
are accessed if possible. The control waits for the import
task to complete and then protects a region of memory to
be mapped with the new file. Once the file operation is
performed, the program exits successfully. In the current work,
we filter the Strace output (as obtained above) whereas we
only keep the system calls invoked by the app (i.e., we drop
the associated arguments and return values). We stress that the
collected sequence of system calls does represent a true time
series.

B. Extracting Artifacts from Apps for Deep Learning

As illustrated in Figure 1, we independently extract static
artifacts (API-calls) as well as dynamic artifacts (system calls)

from an android app. To collect API-calls, we adopt an open-
source tool named Amandroid [3]. To collect dynamic analysis
artifacts, each app from the dataset is executed in an emulator
where we use Linux command line tool Strace to record the the
sequence of system calls invoked by the app during execution.

C. Deep Learning Process

As illustrated in Figure 1, we process static artifacts and
dynamic artifacts independently. On the static side, we rep-
resent the artifact of apps by a set of lists where each list
represents API-calls associated with one app. We use this data
to perform word embedding for each API-call and then use the
word embedded vectors as input to the LSTM model. In our
experiment, we feed the apps in random order to the LSTM
model. We build, train, perform hyper-parameter tuning, and
test the models on AWS using Keras, a deep learning library,
which runs on top of TensorFlow 1.14. We follow a similar
approach for dynamic analysis. We do similar preprocessing,
but we trim the system calls such that all the return types and
arguments are ignored. We follow a similar approach for word
embedding, model generation, training, and testing.

D. Hybrid Analysis

Independently using the static analysis or dynamic analysis
based models, we obtain the probability of prediction of an
app « for the two classes (malicious and benign). As illustrated
in Figure 1, we compute the hybrid probability of prediction
of the app = being malicious (or benign) as the average of
probability of prediction for x being malicious (or benign)
from the two models. Finally, the hybrid classifier predicts the
output class of app = as the one with higher probability. For
example, if static analysis model predicts the probability of
app z to be malicious as 0.6 and benign as 0.4, and dynamic
model assigns 0.7 for malicious and 0.3 for benign, we take
(0.6 + 0.7)/2 = 0.65 as probability for = to be malicious.
Similarly, for app = to be benign we get probability of (0.4 +
0.3)/2 = 0.35. Since the probability of x to be malicious is
greater than that to be benign, the hybrid analysis predicts = to
be malicious. Finally, the hybrid classifier predicts the output
class as the one with higher probability.

V. IMPLEMENTATION

Here we discuss the experimentation environment, dataset
preparation, and implementation of the deep learning based
vetting system.

A. Experimentation Environment

To obtain static artifacts from apps, we run the extractor
program on a i2.8Xlarge instance (on AWS) with 32 cores in
parallel. To collect dynamic artifacts (i.e., system calls), we use
Genymotion Android Emulator (which is available as Product
as a Service on AWS) to execute the android apps: We used
android 7.0 (Nougat) to execute the apps and record the system
calls. To build the deep learning system, we use EC2’s Ubuntu
18.04 Deep Learning AMI (V25.3) loaded in a g3.8Xlarge
instance. This type of instance uses 32 vCPUs, 244 GiB

memory, and 150 GiB SSD. We configure the instance with
port-forwarding so that we can connect to Jupyter notebook
from the local machine. We store the set of files containing
static and dynamic artifacts in an AWS S3 bucket from where
we load them to EC2 instance when necessary. We used the
same EC2 instance for all experiments.

B. Dataset Preparation

Below we discuss how we prepare the app dataset, and how
we extract artifacts to be used in the deep learning phase.

1) Preparing Apk Dataset

Android Malware Dataset (AMD) [25] is comprised of
about 25K apks dating from 2010 to 2016. AMD is the source
of the malicious apps in our dataset. Furthermore, AndroZoo
[26] is a continually growing dataset, currently having more
than 10 million apps. AndroZoo is the source of the benign
apps in our dataset. To establish ground truth we double
check the status of an app x with VirusTotal [27] before
including x in our malicious or benign dataset. In particular,
each app «x is fed to VirusTotal, which generates a report
(a json file) comprising of individual reports from about 50
anti-malware software (as used by VirusTotal). We use the
reports corresponding to app « to determine the status of z: We
consider z to be benign only if no anti-malware in VirusTotal
flags = as malicious; we consider x to be high qualility
malicious app if majority (i.e., more than half) of antimalware
products flag = as malicious; otherwise, we consider x as a
low quality malicious app.

For experimentation we build multiple datasets whereas the
difference in them is the quality of ground truth of malware
apps. In particular, Dataset] consists of high quality malware
apps along with benign apps whereas Dataset2 consists of
low quality malware apps along with benign apps. Dataset3
contains larger number of apps, and it has both high and low
quality malware apps along with benign apps.

Out of all apps from AMD dataset, 12,063 apps were
deemed as high quality malicious by the aforementioned
majority voting scheme. We randomly selected only 5,617
apps from these 12, 063 apps to include in Dataset!. Similarly,
out of 56,300 (randomly selected) AndroZoo apps, we find
36,114 coming out as clear benign through VirusTotal. We
randomly selected only 12,610 apps from these 36,114 to
include in Datasetl. We had to limit ourselves to this smaller
dataset (malicious apps and benign apps) for experimentation
due to monetary constraint as the process of extracting dy-
namic artifacts is expensive (as explained later). However, we
used a bigger dataset (i.e., Dataset3) for the static analysis
experiments when necessary (as mentioned later).

Out of all apps from AMD dataset, 12,436 apps were
deemed as low quality malicious by the aforementioned ma-
jority voting scheme. We randomly selected only 5,617 apps
from these 12,436 apps to include in Dataset2. Regarding
the benign apps, Dataset2 has the same benign apps (i.e.,
12,610 in count) as in Datasetl. On the other hand, we include
all AMD apps (24,406) and all the aforementioned 36,114
benign apps to build Dataset3. For the sake of brevity, in the

rest of the paper, unless explicitly mentioned, all experiments
are run on Datasetl, and by dataset we refer to Dataset].

2) Extraction of Static Artifacts

We introduce a new mode in the open source tool Aman-
droid to obtain the API-calls without performing more expen-
sive operations, such as building CFG or DFG. This new mode
decompiles the apk file, and collects API-calls. In particular,
we track each class and the procedures within each class. We
obtain the API-calls from a class as a paragraph where API-
calls from each function in the class is a sentence and each
API-call is a word in the sentence.

3) Extraction of Dynamic Artifacts

We execute each app on android 7.0 (Nougat) instance of
Genymotion on AWS to obtain the sequence of system calls.
Manually triggering random events would not be feasible. So,
we automate the process as follows: We use Android Asset
Packaging tool (AAPT) to obtain package information, then
install the app using Android debug bridge (ADB), then fetch
the process id associated with the app, and then use Strace to
track the system calls while executing the app by providing
random events through ADT Monkey tool. ADT Monkey
causes random events such as swipe, clicks, keystrokes, efc.
to expand the code coverage.

C. Deep Learning

As shown in Figure 1, we do deep learning on static and
dynamic artifacts where the learning process is essentially the
same. For the sake of brevity, let us discuss the deep learning
process in general terms, which is agnostic to the type of
artifact. Since the artifacts are sequential in nature, we opt
to use the LSTM network, which is well known to capture
sequential behavior of a dataset. Figure 2 presents the deep
learning network with LSTM unrolled in time.

As the artifacts are in string format, we cannot directly
provide them as an input to LSTM because LSTM can only
work with numbers. So, we convert each word (i.e., API call
or system call) into a vector of real numbers. In particular, we
use the word2vec algorithm to get the vector representation
of a word, capturing the semantic meaning of that word.
For example, system call (words) such as socket and connect
are closely related, which might be reflected on their vector
representation i.e., vectors representing these two words could
be highly similar.

The output of word2vec algorithm is an embedding matrix
whose dimension is [#words, dim], where #words refers
to the total number of distinct words (API-calls or system
calls), and dim refers to the dimension of the embedding
vector. This means, each row of this matrix represents the
vector representation of a word. In our experiments, we use
the CBOW model of word2vec algorithm, and we set dim to
100.

We implement the deep learning system using Keras in
Jupyter notebook on AWS. We first set up an embedding
layer. Instead of learning weights for embedding layer, we
provide the embedding matrix (output of word2vec algorithm)
to the embedding layer which is used to map each word in the

artifact to its vector representation. This vector representation
is passed as input for the LSTM network. From that point on,
the flow of network is shown in Figure 2. We consider that
input X has 4000 timesteps, and accordingly we reshape the
input. The i-th timestep data (X(;)) is fed to a LSTM cell
and, so on. Note that the LSTM cell’s each inner FC layer has
128 hidden units. Further, note that we studied the distribution
of number of API-calls and system calls (of an app) in our
artifacts dataset before we chose to set 4000 timesteps in the
LSTM model.

Prob. \,,, Prob.

I

Softmax

Ben

Fully Connected

- P[LSTM cell]—i[LSTM cell]

X (3999)

[LSTM cell |—'| LSTM cell |—'

X0

Xy X (3998)

Fig. 2. Unrolled LSTM model with dimensions

Regarding hyperparameter tuning, we performed multiple
experiments with several learning rates to know which learning
rate gives the best result. We first divide the dataset into the
train and test data, and then we further divide the train data
into training and validation set. For each learning rate, we run
training on the training set and validate using the validation
set. To this aim, we use scikit-learn’s StratifiedShuffleSplit to
generate random training and validation set for each learning
rate. We maintain a batch size of 75. This way we found out
that the learning rate of 0.01 gives the best result. We then
use this learning rate to train the final LSTM model whose
training data consist of combined training and validation set
that we used in the above-mentioned experiment. Finally, we
test the model with the test data that was left untouched in the
above experiment.

Furthermore, we also apply other variants of LSTM, such
as Bi-LSTM and Attn-BiLSTM. The implementation of Bi-
LSTM and Attn-BiLSTM are straightforward extensions of
LSTM: As in the case of Bi-LSTM we add an extra layer
of backward cells to the LSTM network. We achieve this
by adding the Bidirectional layer wrapper provided by Keras.
For Attn-BiLSTM, we use attention weights and biases over
Bi-LSTM. We do this by adding the SeqWeightedAttention
layer (from the keras-self-attention package) on top of the bi-
directional LSTM layer.

VI. EVALUATION

In this section, we present the performance results of our
vetting system, and when applicable, we compare the results
with the prior work.

A. Spliting the dataset in train set and test set

We split the app dataset in a train set and a test set: The train
set contains 4, 617 malicious and 10, 610 benign apps whereas
the test set contains the remaining apps (1,000 malicious and
2,000 benign apps). Table III shows the train-test split used.
We remind the reader that we use the same train-test split for
static and dynamic analysis.

TABLE III
TRAIN-TEST SPLIT
Malicious | Benign
Train Set 4,617 10,610
Test Set 1,000 2,000
Whole Dataset] 5,617 12,610

B. Evaluation of Deep Learning Models

As discussed in Section V-C, during hyperparameter tuning,
we observed that Adam optimizer with a learning rate of 0.01
yields best results. Note that only hyperparameter that we tune
is the learning rate. We set the same hyperparameters for all
the models (as discussed in the rest of the paper) to train and
test. As shown in literature [5], area under precision-recall
curve (AUC) is a good metric to evaluate the performance of
a classifier. So, we choose to use mainly this metric in this
paper. Higher the AUC, better is the model. Below we present
the results obtained from static analysis, dynamic analysis, and
hybrid analysis.

1) Evaluation of Static Analysis

All three models i.e., LSTM, Bi-LSTM and Attn-BiLSTM
based on static artifacts are trained and tested on the same
dataset.

Comparison of Static Analysis Models. We summarize the
results obtained from the models trained and tested on static
artifacts in Table IV. AUC as shown in Table IV suggests that
the DL models are able to learn better when sequence-orders
are considered from both forward and backward direction
in Bi-LSTM. Use of attention weights along with Bi-LSTM
yields the best result out of the three models.

TABLE IV
COMPARISON OF STATIC ANALYSIS RESULTS
DL Model Precision Recall F1 AUC
LSTM 0.9470 0.9130 | 0.9297 | 0.9779
Bi-LSTM 0.9454 0.9190 | 0.9320 | 0.9823
Attn-BiLSTM 0.9897 0.9690 | 0.9792 | 0.9968

Comparing with the Prior Work (ML Algorithm). Roy
et al. used 471 static analysis features with traditional ML
models to classify android apps. We use Roy et al.’s feature
extraction engine to extract those 471 features from our apk
dataset, and use the same train-test split. We present the results
obtained in Table V. We stress that even if the ML algorithm’s
result looks competitive with Table IV, ML algorithm relies on
human expertise to manually select the features. In contrast,
DL algorithms learn the features themselves, which aids to
automation and scalability.

TABLE V
STANDARD ML ALGORITHMS WITH 471 FEATURES USED BY ROY et al.

ML Model Precision Recall F1 AUC

Bernoulli Naive 0.8430 0.6912 | 0.7596 | 0.8558
Bayes

K-Nearest 0.9025 0.9837 | 0.9414 | 0.9574
Neighbor (K=5)
Support Vector 0.9734 0.9252 | 0.9487 | 0.9819

Machine

2) Evaluation of Dynamic Analysis

Similar to evaluation of the static artifacts based models, we
compare the results obtained from training LSTM, Bi-LSTM
and Attn-BiLSTM using dynamic artifacts.

Comparison of Dynamic Analysis Models. We summarize
the results obtained from the deep learning models trained
and tested on dynamic artifacts in Table VI. We observe that
the results are similar to those obtained from static artifacts
based models. Attn-BiLSTM does the best job with only 1
false alarm and 16 missed alarms. However, Bi-LSTM gives
the best area under the curve, the difference being 0.0002
(0.9973 — 0.9971) as compared with Attn-BiLSTM.

TABLE VI
COMPARISON OF DYNAMIC ANALYSIS RESULTS
DL Model Precision | Recall F1 AUC
LSTM 0.9979 0.9730 | 0.9853 | 0.9932
Bi-LSTM 0.9969 0.9820 | 0.9894 | 0.9973
Attn-BiLSTM 0.9989 0.9840 | 0.9914 | 0.9971

3) Evaluation of Hybrid Analysis

Comparison of Hybrid Analysis Results. We present the
results obtained using the hybrid approach in Table VII. We
observe that hybrid approach to classification outperforms
static analysis and dynamic analysis.

TABLE VII
COMPARISON OF HYBRID ANALYSIS RESULTS
DL Model Precision Recall F1 AUC
LSTM 0.9969 0.9760 | 0.9863 | 0.9978
Bi-LSTM 1.0 0.9820 | 0.9909 | 0.9993
Attn-BiLSTM 0.9979 0.9930 | 0.9954 | 0.9998

We observe that on the AUC metric, Bi-LSTM outperforms
LSTM, and Attn-BiLSTM does better than both LSTM and
Bi-LSTM.

C. Experimenting with Imbalanced Data

So far, the number of malicious apps and benign apps in
the test dataset in our experiments was fixed as shown in
Table III. To test out the performance of our vetting system
on imbalanced data, we perform the following experiment. We
create multiple test dataset by varying the number of malicious
apps as 200, 400, 600, 800, 1000 while keeping the number
of benign apps at 2000. This allows us to vary the imbalance
(malicious to benign) ratio from 1:2 to 1:10. Figure 3 shows
the performance results of our static artifacts based LSTM

model on the above varying datasets. The more imbalanced the
test data more the challenge the classifier faces in keeping a
good AUC score. However, we observe that our static artifacts
based LSTM model is fairly robust against imbalanced data.

0.98

0.97

0.96 -

0.95

AUC

0.94

0.93

0.92

2 3 4 5 6 71 8 9 10
Benign/Malicious Ratio

Fig. 3. Vetting accuracy of static artifacts based LSTM model on imbalanced
data (varying benign and malicious app ratio in the test data.)

D. Impact of malware quality on vetting accuracy

We performed an experiment with our static artifacts based
LSTM model on Dataset2, which consists of benign apps
and low quality malicious apps. The results are shown in
Table VIII. We observe that our model performs fairly well in
identifying low quality malware apps. However, the accuracy
is significantly lower than what we got before. The results
also show that accuracy of a classifier depends not only on
the model design but also on the quality of data. This point
the community should keep in mind when comparing two
published papers’ (reporting android app vetting performance)
models.

TABLE VIII
OUR STATIC MODEL’S ACCURACY ON LOW QUALITY DATASET
DL Model | Precision | Recall F1 AUC
LSTM 0.9333 0.868 | 0.899 | 0.9588

E. Scalability of our vetting system

Regarding scalability, only possible concern is the training
phase as the testing phase takes no significant time in compari-
son. Recall that the training set of Dataset] consists of 15, 227
apps. It took 2.21 hours for the training of static artifacts
based LSTM model to complete. To investigate scalability, we
then trained the LSTM model on Dataset3, which is a much
larger dataset. The training set of Dataset3 consists of 52, 520
apps (21,406 malicious + 31,114 benign), and it took 5.93
hours for the training to complete. The above indicates that
the training time has increased linearly only. Also, note that
the static artifacts based LSTM model gave us 0.97 AUC for
Dataset3.

F. Experiments with Malware Apps from Prior Work

We have received the Maldozer (malware) dataset from the
MalDozer research group [20]. We have built an experimental
dataset by combining (5,617 random samples) from the above
apps with our same 12,610 benign apps (as in Datasetl).
We extracted static features and ran our deep learning vetting
system on this experimental dataset. The results are shown in
Table IX. Maldozer group reported that their DL model [20]
achieves an F1-Score of 0.96 with false positive of 0.06.

TABLE IX
OUR STATIC MODEL’S ACCURACY ON MALDOZER DATASET
DL Model Precision Recall F1 AUC
LSTM 0.9463 0.9340 | 0.9401 | 0.9821
Bi-LSTM 0.9761 0.9840 | 0.9800 | 0.9983
Attn-BiLSTM 0.9900 0.9960 | 0.9930 | 0.9998

VII. CONCLUSION AND FUTURE WORK

In this work, we used API-calls and system calls to train
deep learning models for security vetting of Android apps. In
particular, as the deep learning technology we experimented
with LSTM and its variants (Bi-LSTM and Attn-BiLSTM).
Individual models trained on static artifacts and dynamic
artifacts showed that Attn-BiLSTM models yield better results
than Bi-LSTM and LSTM. We designed a hybrid approach to
combine the vetting decision of a static artifacts based model
and a dynamic artifacts based model. Hybrid Attn-BiLSTM
was the best model that we built, which yielded a near-perfect
classification accuracy.

Limitations of the current work include: (a) The static
artifacts (API-calls) do not form a true time-series, which
means some information is getting lost before reaching the
LSTM model. (b) We did not yet study the semantics of the
attention in the attention-based models.

As part of future work, we will investigate some of the
weights produced by the attention layer and will identify to
what words they correspond. Thus, we can add some semantic
to the predictions. As other future work, we look forward
to incorporating noise in the training data and also detecting
zero day malware. Also, we want to experiment with other
artifacts, such as using the entire app bytecode/resource files.
Furthermore, in the future, we would like to experiment with
other approaches to hybrid classification such as feeding both
static and dynamic artifacts together (with back-propagation)
to train the model (as opposed to current hybrid classifier,
which merely combines end results from static and dynamic
artifacts based models) and more.

ACKNOWLEDGMENT

This work has been partially supported by the U.S. National
Science Foundation (NSF) under grant no. 1718214, 1717871,
and 1717862. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

Statista, “Mobile OS Market Share,” 2020. [Online].
Auvailable: https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-
since-2009/

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel,
“FlowDroid: Precise Context, Flow, Field, Object-
sensitive and Lifecycle-aware Taint Analysis for Android
Apps,” SIGPLAN, pp. 259-269, 2014.

F. Wei, S. Roy, X. Ou, and R. Robby, “Amandroid: A
Precise and General Inter-component Data Flow Analysis
Framework for Security Vetting of Android Apps,” ACM
Transactions on Privacy and Security, pp. 1-32, 2018.
S. Roy, D. Chaulagain, and S. Bhusal, “Book Chapter:
Static Analysis for Security Vetting of Android Apps,”
in From Database to Cyber Security: Essays Dedicated
to Sushil Jajodia on the Occasion of His 70th Birthday.
Springer International Publishing, 2018, pp. 375-404.
S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea,
X. Ou, V. P. Ranganath, H. Li, and N. Guevara, “Ex-
perimental study with real-world data for android app
security analysis using machine learning,” in Proceed-
ings of the 31st Annual Computer Security Applications
Conference (ACSAC), 2015, pp. 81-90.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and
K. Rieck, “DREBIN: Effective and Explainable Detec-
tion of Android Malware in Your Pocket,” in Symposium
on Network and Distributed System Security (NDSS),
2014, pp. 23-26.

L. Onwuzurike, E. Mariconti, P. Andriotis, E. De Cristo-
faro, G. Ross, and G. Stringhini, “MaMabDroid: Detecting
Android Malware by Building Markov Chains of Behav-
ioral Models (extended version),” ACM Transactions on
Privacy and Security, pp. 1-31, 2019.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing. The MIT Press, 2016.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, pp. 436-444, 2015.

R. Vinayakumar, S. Kp, P. Poornachandran, and S. Ku-
mar S, “Detecting Android Malware using Long Short-
term Memory,” Journal of intelligent and fuzzy systems,
pp. 1277-1288, 2018.

Y. Bengio, P. Simard, and P. Frasconi, “Learning Long-
term Dependencies with Gradient Descent is Difficult,”
IEEE Transactions on Neural Networks, pp. 157-166,
1994.

F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning
to forget: continual prediction with Istm,” in 1999 Ninth
International Conference on Artificial Neural Networks
ICANN 99. (Conf. Publ. No. 470), 1999, pp. 850-855.
S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Computation, pp. 1735-1780, 1997.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
Estimation of Word Representations in Vector Space,” in

[18]

[21]

[26]

[27]

ICLR Workshop, 2013.

R. Rehifek and P. Sojka, “Software Framework for
Topic Modelling with Large Corpora,” in Proceedings of
the LREC 2010 Workshop on New Challenges for NLP

Frameworks. ELRA, 2010, pp. 45-50.
C. Olah, “Understanding LSTM,” 2015. [On-
line]. Available: http://colah.github.io/posts/2015-08-

Understanding-LSTMs/

P. Zhou, W. Shi, J. Tian, Z. Qi, B. Li, H. Hao, and
B. Xu, “Attention-Based Bidirectional Long Short-Term
Memory Networks for Relation Classification,” in Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, 2016, pp. 207-212.

M. 1. Gordon, D. Kim, J. H. Perkins, L. Gilham,
N. Nguyen, and M. C. Rinard, “Information Flow Analy-
sis of Android Applications in DroidSafe,” in Symposium
on Network and Distributed System Security (NDSS),
2015, pp. 110-126.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “TaintDroid: An
Information-flow Tracking System for Realtime Privacy
Monitoring on Smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, 2010, pp. 393-407.

E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb,
“MalDozer: Automatic Framework for Android Malware
Detection using Deep Learning,” Digital Investigation,
pp- S48-S59, 2018.

Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining
API-Level Features for Robust Malware Detection in
Android.” in International conference on security and
privacy in communication systems, 2013, pp. 86—103.
X. Ke, Y. Li, R. H. Deng, and K. Chen, “DeepRefiner:
Multi-layer Android Malware Detection System Apply-
ing Deep Neural Networks,” in 2018 IEEE European
Symposium on Security and Privacy, 2018, pp. 473—-487.
S. Hou, A. Saas, L. Chen, and Y. Ye, “Deep4MalDroid:
A Deep Learning Framework for Android Malware De-
tection Based on Linux Kernel System Call Graphs,” in
2016 IEEE/WIC/ACM International Conference on Web
Intelligence Workshops (WIW), 2016, pp. 104-111.

M. Schuster and K. Paliwal, “Bidirectional Recurrent
Neural Networks,” IEEE Transactions on Signal Process-
ing, pp. 2673-2681, 1997.

F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep
Ground Truth Analysis of Current Android Malware,”
in International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA’17),
2017, pp. 252-276.

K. Allix, T. FE. Bissyandé, J. Klein, and Y. Le Traon,
“AndroZoo: Collecting Millions of Android Apps for the
Research Community,” in Proceedings of the 13th Inter-
national Conference on Mining Software Repositories,
2016, pp. 468-471.

“VirusTotal: Analyze Suspicious Files and Urls,” 2020.
[Online]. Available: https://www.virustotal.com/

