
Ad Hoc Networks 7 (2009) 1448–1462
Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier .com/locate /adhoc
Secure median computation in wireless sensor networks

Sankardas Roy a, Mauro Conti b,*, Sanjeev Setia c, Sushil Jajodia a,1

a Center for Secure Information Systems, George Mason University, Fairfax, VA 22030, USA
b Dipartimento di Informatica, Università di Roma ‘‘La Sapienza”, 00198 Roma, Italy
c Department of Computer Science, George Mason University, Fairfax, VA 22030, USA

a r t i c l e i n f o
Article history:
Available online 23 April 2009

Keywords:
Sensor network security
Data aggregation
Hierarchical aggregation
Attack-resilient
1570-8705/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.adhoc.2009.04.007

* Corresponding author. Tel.: +39 06 49918430; f
E-mail addresses: sankar.roy@gmail.com (S. Roy),

(M. Conti), setia@gmu.edu (S. Setia), jajodia@gmu.e
1 The work of Sushil Jajodia is partially supported

Foundation under grants CT-0716567, CT-0716323,
0430402.
a b s t r a c t

Wireless sensor networks (WSNs) have proven to be useful in many applications, such as
military surveillance and environment monitoring. To meet the severe energy constraints
in WSNs, several researchers have proposed to use the in-network data aggregation tech-
nique (i.e., combining partial results at intermediate nodes during message routing), which
significantly reduces the communication overhead. Given the lack of hardware support for
tamper-resistance and the unattended nature of sensor nodes, sensor network protocols
need to be designed with security in mind. Recently, researchers proposed algorithms
for securely computing a few aggregates, such as Sum (the sum of the sensed values),
Count (number of nodes) and Average. However, to the best of our knowledge, there is
no prior work which securely computes the Median, although the Median is considered
to be an important aggregate. The contribution of this paper is twofold. We first propose
a protocol to compute an approximate Median and verify if it has been falsified by an
adversary. Then, we design an attack-resilient algorithm to compute the Median even in
the presence of a few compromised nodes. We evaluate the performance and cost of our
approach via both analysis and simulation. Our results show that our approach is scalable
and efficient.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks (WSNs) are being used in
many applications [12,14,27], such as military surveillance,
wildlife habitat monitoring, forest fire prevention, etc. A
WSN normally consists of a large number of sensor nodes
which are self-organized into a multi-hop network.

The simplest way to collect the sensed data is to let each
sensor node deliver its reading to the base station (BS). This
approach, however, is wasteful since it results in excessive
communication. A typical sensor node is severely con-
. All rights reserved.

ax: +39 06 8541842.
conti@di.uniroma1.it
du (S. Jajodia).

by National Science
CT-0627493, and IIS-
strained in communication bandwidth and energy reserve.
Hence, sensor network designers have advocated alterna-
tive approaches for data collection.

An in-network aggregation algorithm combines partial
results at intermediate nodes during message routing,
which significantly reduces the amount of communication
and hence the energy consumed. A typical data acquisition
system [9,16] constructs a spanning tree rooted at the BS
and then performs in-network aggregation along the tree.
Partial results propagate level by level up the tree, with
each node awaiting messages from all of its children before
sending a new partial result to its parent. Researchers
[9,16] have designed several energy-efficient algorithms
to compute aggregates such as Count, Sum, Average, etc.
However, an in-network aggregation algorithm cannot
cheaply compute the exact Median, where the worst case
communication overhead per node is XðNÞ, where N is
the number of nodes in the network [16]. As a result,

mailto:sankar.roy@gmail.com
mailto:conti@di.uniroma1.it
mailto:setia@gmu.edu
mailto:jajodia@gmu.edu
http://www.sciencedirect.com/science/journal/15708705
http://www.elsevier.com/locate/adhoc

S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462 1449
researchers have advocated computation of an approxi-
mate Median. In-network aggregation algorithms to com-
pute an approximate Median are proposed in [11,26].

Unfortunately, none of the above algorithms include
any provisions for security, and hence, they cannot be used
in security-sensitive applications. Given the lack of tam-
per-resistance and the unattended nature of many net-
works, we must consider the possibility that a few sensor
nodes in the network might become compromised.

A compromised node in the aggregation hierarchy may
attempt to change the aggregate value computed at the BS
by relaying a false sub-aggregate value to its parent. This
attack can be launched on most of the in-network aggrega-
tion algorithms. For example, in Greenwald and Khanna’s
approximate Median computation algorithm [11], a com-
promised node in the aggregation hierarchy can corrupt
the quantile summary to make the BS accept a false Med-
ian which might contain a large amount of error.

A technique to compute and verify Sum and Count
aggregates has been recently proposed by Chan et al. [3].
Their scheme [3] can also verify if a given value is the true
Median, but they have not proposed any solution to com-
pute that value in the first place. To the best of our knowl-
edge, there is no prior work which securely computes the
Median using an in-network algorithm.

One might suggest an approach which runs Greenwald
and Khanna’s algorithm [11] to compute an approximate
Median and then employs Chan et al.’s verification proto-
col [3] to verify if the computed value is indeed a valid esti-
mate. We refer this approach as GC in the rest of the paper.
The communication cost per node in this approach is
O log2N

�

� �
, where � is the approximation error bound.

In this paper, we propose an alternative approach to
compute and verify an approximate Median, which proves
to be more efficient compared to the GC approach. Our ap-
proach is based on sampling—an uniform sample of sensed
values is collected from the network to make a preliminary
estimate of the Median, which is verified and refined later.
The communication cost of our basic algorithm is
O 1

�D log N
� �

, where � is the error bound and D is the max-
imum degree of the aggregation tree used by the
algorithm.

Like the GC approach, our basic algorithm guarantees
that an attacker cannot cause the BS to accept a Median
estimate which contains an error more than the user-spec-
ified bound, �. However, neither of the above approaches
can guarantee the successful computation of the Median
in the presence of an attacker. We recall that the attacker
node might falsify the sub-aggregate it is forwarding not
obeying the designed protocol (e.g., reporting at queries
something that it should not report; not reporting at the
Table 1
Median computation protocols: Comparing the performance and the security feat

Node congestion Late

Greenwald and Khanna’s protocol [11] Oððlog2NÞ=�Þ 2
GC approach (Section 4.1) Oððlog2NÞ=�Þ 6
Our basic protocol (Section 4.3) Oðð1=�ÞDlogNÞ 6 w.
Our extended protocol (Section 6) Oðð1=�ÞDlogNÞ 6 w.
queries something that it should report). To address this
problem, we extend the basic approach so that we can
compute the Median even in the presence of a few compro-
mised nodes. The analysis and simulation results show
that our algorithms are effective and efficient. Further,
our algorithms can be extended to compute other
quantiles.

Table 1 compares our approach with other solutions on
the basis of a few performance and security metrics. We re-
port node congestion as a metric for communication com-
plexity, which represents the worst case overhead on a
single node. We measure the latency of the protocols in
epochs. As discussed in the prior work [16], an epoch rep-
resents the amount of time a message takes to traverse
the distance between the BS and the farthest node on the
aggregation hierarchy. We observe that the latency of our
protocol might increase in extreme cases; here we report
the latency which our protocol incurs in most cases (i.e.,
with high probability (w.h.p.)).

To measure the security of the protocols, we consider
the following properties. We say that a protocol has verifi-
cation property if the protocol enables the BS to verify
whether the computed Median is false or not. Observe that
this property does not guarantee the computation of the
Median in the presence of an attack. Finally, an attack-
resilient protocol is so if it guarantees the computation of
the Median in the presence of a few malicious nodes.

We note that our verification and attack-resilient proto-
cols can be easily extended to compute any order-statistic,
as discussed in Section 4.3.2.

1.1. Organization

The rest of the paper is organized as follows. In Section
2, we review the related work present in the literature.
Section 3 describes the problem and the assumptions ta-
ken in this paper. In Section 4, we present our basic proto-
col, whose security and performance analysis is given in
Section 5. Section 6 describes our attack-resilient protocol.
We present our simulation results in Section 7, and finally,
we conclude the paper in Section 8.

2. Related work

Several researchers [9,16] have proposed in-network
aggregation algorithms which fuse the sensed information
en route to the BS to reduce the communication overhead.
In particular, these algorithms are designed to compute
algebraic aggregates, such as Sum, Count, and Average.
However, Madden et al. [16] showed that in-network
aggregation does not save any communication overhead
ures.

ncy (epochs) Verification Attack-resilient computation

No No
Yes No

h.p. Yes No
h.p. Yes Yes

1450 S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462
in case of computing holistic aggregates, such as the
Median.

To limit the communication complexity, researchers
have advocated computing an approximate estimate in-
stead of the exact Median [11,26]. In particular, Greenwald
and Khanna [11] proposed a quantile summary computa-
tion algorithm that exploits a concept of delayed aggrega-
tion so that no summary contains error more than �
bound. Also, Srivastava et al. [26] presented another data
summarization technique called quantile digest to compute
an approximate median, where the main idea is to com-
pute an equi-depth histogram through in-network aggre-
gation. There also exists a body of data stream algorithms
in the literature which computes approximate quantiles
[5,10,17]. In fact, Greenwald and Khanna’s algorithm [11]
is an extension of [10].

Our Median computation algorithm has a sampling
phase and a histogram computation phase. A preliminary
version of our solution has been recently published [24].
In this paper, we extend our analysis and add new simula-
tion results that support the feasability of our solution.

Sampling techniques have been previously employed
for data reduction in databases [1,23]; in particular [1] uses
a sample of a large database to obtain an approximate an-
swer. Another work, from Munro and Paterson [19], ana-
lyzed the lower bound on storage space and number of
passes of a Median computation algorithm. Jain et al.
[13] proposed a centralized algorithm to compute quan-
tiles and histograms with limited storage space. Recently,
Patt-Shamir [21] designed an approximate Median compu-
tation algorithm using the synopsis diffusion framework
[4,20], which uses a multipath routing algorithm to en-
hance robustness against communication loss. We note
that none of the above algorithms were designed with
security in mind, and an attacker can inject an arbitrary
amount of error in the final estimate.

Recently, a few researchers have examined security is-
sues in aggregation algorithms. Wagner [28] addressed
the problem of resilient data aggregation in the presence
of malicious nodes and provided guidelines for selecting
aggregation functions in a sensor network. Yang et al.
[29] proposed SDAP, a secure hop-by-hop data aggregation
protocol using a tree-based topology to compute the Aver-
age in the presence of a few compromised nodes. SDAP di-
vides the network into multiple groups and employs an
outlier detection algorithm to detect the corrupted groups.
In our extended approach, we also use a grouping tech-
nique but without any outlier detection algorithm that
would otherwise require the assumption that groups have
similar data distribution. Another approach for the se-
curely computing Count and Sum, proposed by Roy et al.
[25], is designed for the synopsis diffusion framework
[4,20].

Chan et al. [3] designed a verification algorithm by
which the BS could detect if the computed aggregate was
falsified. However, the authors did not propose any algo-
rithm to compute the Median. Their verification algorithm
is based on a novel method of distributing the verification
responsibility onto the individual sensor nodes. An
improvement on the communication complexity of the
above algorithm has been recently proposed by Frikken [8].
3. Assumptions and problem description

The goal of this paper is to securely compute an approx-
imate Median of the sensor readings in a network where a
few nodes might be compromised. Given a specified error
bound, we return an approximate Median which is suffi-
ciently close to the exact Median. This section describes
our system model and design goals.
3.1. Network assumptions

We assume a general multihop network with a set of N
sensor nodes and a single BS. The BS knows the IDs of the
sensor nodes present in the network. The network user
controls the BS, initiates the query and specifies the error
bound �. In the rest of the paper, we consider the user
and the BS as a single entity. We also consider that sensor
nodes are similar to the current generation of sensor nodes
(e.g., Berkeley MICA2 motes [6]) in their computational
and communication capabilities and power resources,
while the BS is a laptop-class device supplied with long-
lasting power.

We assume that the in-network aggregation is per-
formed over an aggregation tree which is constructed dur-
ing the query broadcast, similarly as in the TAG
algorithm [16]. However, our approach does not rely on a
specific tree construction algorithm. The approximation er-
ror � in the estimated Median m̂ is determined by how
many position m̂ is away from the exact Median m in the
sorted list of all the sensed values. For ease of exposition,
without loss of generality we assume that all the sensed
values are distinct. Note that we could relax this assump-
tion by defining an order on the nodes’ ID that have same
sensed value. Also, for the ease of exposition, we assume
that there is an odd number of sensed values in total so
that the Median is one element of the population.
3.2. Security model

We assume that the BS cannot be compromised. The BS
uses a protocol such as lTesla [22] to authenticate broad-
cast messages. We also assume that each node X shares a
pairwise key, KX with the BS, which is used to authenticate
the messages it sends to BS.

In this paper, we do not address outsider attacks – we
can easily prevent unauthorized nodes from launching at-
tacks by augmenting the aggregation framework with
authentication and encryption protocols [22,30].

We consider that the adversary can compromise a few
sensor nodes (i.e., insiders) without being detected. If a
node is compromised, all the information it holds will also
be compromised. We use a Byzantine fault model, where
the adversary can inject malicious messages into the net-
work through the compromised nodes. We observe that a
compromised node might launch multiple potential at-
tacks against a tree-based aggregation protocol, such as
corrupting the underlying routing protocol, selective drop-
ping, or a Denial of Service attack to prevent other nodes
from receiving the messages from the BS. However, in this
paper we address only false data injection attacks where

Table 2
Notations.

Symbol Meaning

N Total number of nodes (or total number of sensed values)
S Sample size
Ei Value of ith item in the sorted sample
KX Symmetric key shared between node X and the BS
� Error bound for the approximate Median
qi Bucket boundary in histogram
Bi � ½qi; qiþ1� ith bucket of the histogram
ci Count of ith bucket
vX Sensed value of node X
MACðKX ;MÞ Message authentication code of message M computed

using key KX

VX ¼ ðX; vX ;MACðKX ;vXÞÞ
X ! Y X sends a message to Y
X ! � X broadcasts a message
X) Y X sends a message to Y via multiple paths
a1ka2 Concatenation of string a1 and a2

D The maximum degree of the aggregation tree
g Number of groups in the attack-resilient algorithms
w Number of compromised nodes

S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462 1451
the goal of the attacker is to cause the BS to accept a false
aggregate. To achieve this goal in an in-network Median
computation algorithm (e.g. [11]), a compromised node X
could either attempt to falsify its own sensed value, vX ,
or the sub-aggregate X is supposed to forward to its parent.
We note that as we are computing Median, by falsifying
the local value a compromised node can only deviate the
final estimate by one position, i.e., the impact of the falsi-
fied local value attack is very limited. Moreover, it is impos-
sible to detect the falsified local value attack without
domain knowledge about what is an anomalous sensor
reading. On the other hand, the falsified sub-aggregate at-
tack, in which a node X does not correctly aggregate the
values received from X’s child nodes, poses a large threat
to an in-network Median computation algorithm; a com-
promised node X forwards to its parent a corrupted aggre-
gate which falsely summarizes X’s descendants’ sensed
values. We observe that by launching this attack, a single
compromised node, which is placed near the root on the
aggregation hierarchy, can deviate the final estimate of
the Median by a large amount (e.g., in [11]).

3.3. Problem description

We aim to compute an approximate Median against the
falsified sub-aggregate attack. In particular, our goal is to de-
sign the following two algorithms.

– Median computation and verification algorithm: This
algorithm either outputs a valid approximate Median
or it detects the presence of an attack. A value, m̂, is con-
sidered to be a valid approximate Median if it is close to
the exact Median, m, within the bound specified by the
user. In particular, if the user-specified relative error
bound is �, the BS accepts an estimate m̂ which satisfies
the following constraint:

rankðm̂Þ � N þ 1
2

����
���� 6 �N ð1Þ

where rankðxÞ denotes the position of the value x in the
sorted list of all the sensed values (the population ele-
ments), and N is the size of the population.

– Attack-resilient Median computation algorithm: If the
above verification fails, our further aim is to compute
an approximate Median in the presence of the attack.

We finally note that by launching a falsified local value
attack, w compromised nodes can deviate rankðm̂Þ in con-
straint (1) above by w positions, which makes the error
bound of the final estimate of the Median to be
ð�þw=NÞ. However, given an upper bound on w, the user
could adjust his input � to finally meet the required bound.

We stress that the aim of our protocol is to let the BS de-
tect the attack on the integrity of the aggregate; confiden-
tiality of the aggregate (which requires confidentiality of
the exchanged messages) is out of the scope of this paper.

3.4. Notation

A list of notations used in this paper is given in Table 2.
4. Computing and verifying an approximate median

The key elements of our approach are to compute a his-
togram of the sensor readings and then derive an approx-
imate Median from the histogram. We collect a sample of
sensed values from the network which is used to construct
the histogram bucket boundaries. Before we present our
scheme, we first discuss an approach to securely compute
an approximation Median whose performance will be later
compared with that of our scheme. Then, we present a his-
togram verification algorithm and finally describe our ba-
sic scheme.

4.1. GC approach

One can suggest a scheme to securely compute an
approximate Median using Greenwald and Khanna’s
Median computation algorithm [11] in conjunction with
Chan et al.’s verification algorithm [3]. A brief description
of these algorithms can also be found in the Appendix. In
the first phase of GC approach, given the approximation
error bound �, we can run Greenwald and Khanna’s algo-
rithm to compute a quantile summary. From the quantile
summary we can derive an approximate Median m̂
which is supposed to satisfy � error bound. In the next
phase, we can verify the actual error present in the esti-
mate, m̂, which might have been falsified by an attacker
in the previous phase. To verify the error, Chan et al.’s
verification algorithm can be applied to count the num-
ber of nodes in the network whose value is no more
than m̂.

The communication cost per node in this approach

comes from the original protocols: that is O log2N
�

� �
for

Greenwald and Khanna’s Median computation algorithm
and OðD log NÞ for Chan et al.’s verification scheme
(considering Frikken’s recent improvement [8]), where N
is the number of nodes in the network, � is the approxima-
tion error bound and D is the number of neighbors of a
node.

1452 S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462
4.2. A histogram verification algorithm

We now present an algorithm for computing and verify-
ing a histogram of sensed values, which is adapted from
Chan et al.’s scheme [3] to compute and verify Sum
aggregate.

Formally, speaking, a histogram is a list of ordered val-
ues, fq0; q1; . . . ; qi; . . .g, where each pair of consecutive val-
ues ðqi; qiþ1Þ is associated with a count ci which represents
the number of population elements, v j, such that
qi < v j 6 qiþ1. We refer such an interval, ðqi; qiþ1Þ as bucket
Bi with boundaries qi and qiþ1.

As noted in [3], the Sum scheme can be adapted to
count the cardinality of a subset of nodes. Here, we apply
Sum aggregate to count how many sensor readings belong
to each histogram bucket. To do so, we require each node X
to contribute 1 to the count of its corresponding bucket
(the bucket X’s sensed value, vX , lies within) in the histo-
gram while we compute the total count for each bucket.
Like Chan et al.’s scheme, the histogram verification
scheme takes four epochs to complete: query dissemina-
tion, aggregation-commit, commitment-dissemination,
and result-checking.

After an aggregation tree is constructed in the query
broadcast epoch, each node X’s message in the aggrega-
tion-commit epoch looks like hb; c0; c2; . . . ; cb�1;hi, where
b is the number of nodes in X’s subtree, b is the number
of buckets in the histogram, each ci represents the count
for the bucket Bi, i.e b ¼

P
ici, and h is an authentication

field. Note that for each bucket count cj all of the other
bucket counts together act as a complement, i.e.
cj þ

P
i–jci ¼ b. A leaf node X whose sensed value, vX , lies

within the bucket Bj sets the fields in its message as fol-
lows: b ¼ 1; cj ¼ 1; ci ¼ 0 for all i–j, and h ¼ X. If an inter-
nal node X whose value vX lies within the bucket Bj

receives messages u1;u2; . . . ; ut from its t child nodes,
where uk ¼ hbk; ck

0; c
k
1; . . . ; ck

b�1;hki, then X’s message
< b; c0; c1; . . . ; cb�1;h > is generated as follows: b ¼P

bk þ 1; c0 ¼
P

ck
0; c1 ¼

P
ck

1; . . . ; cj ¼
P

ck
j þ 1; . . . ; cb�1 ¼P

ck
b�1, and h ¼ H½bkc0kc1k . . . kcb�1ku1ku2k . . . kut �, where H

is a hash function. The above messages along the aggrega-
tion hierarchy logically build a commitment tree which en-
ables the authentication operation in the next phase. Once
Fig. 1. The aggregation-commit phase in histogram verification: in this
example, vX lies in bucket B1, vY lies in bucket B0, and vZ lies in the last
bucket Bb�1.
the base station receives the final commitment, it verifies
the coherence of the final counts, c0, c1; . . . ; cb�1, with the
number of nodes in the network, N. In particular, the BS
performs the following sanity check:

P
ci ¼ N. A simplified

version of the aggregation-commit phase is illustrated in
Fig. 1 with an example of a small network.

Both the commitment-dissemination epoch and the re-
sult-checking epoch are straightforward extensions of
those in Chan et al.’s Sum scheme. During commitment-
dissemination epoch, the final commitment is broadcast
by the BS to the network. In addition, each node X receives
from its parent node all of the off-path values up to the root
relative to X’s position on the commitment tree. The aim of
the commitment dissemination phase is to let each single
node know that its own value has been considered in the
final histogram. The message containing the off-path values
received by a node is bigger compared to that in the Sum
scheme because each off-path value contains b counts
when a histogram with b buckets is computed. In the re-
sult-checking epoch, the BS receives a compressed authen-
tication code from all of the nodes which enables to verify
if each node confirmed that its value has been considered
in the final histogram.

As in Chan et al.’s Sum scheme, the main cost of this
protocol is due to the dissemination of the off-path values
to individual nodes. To reduce this overhead, following the
recent improvement proposed by Frikken [8], we use a bal-
anced commitment tree as an overlay on the physical
aggregation tree. For the details the reader can refer to
[3] and [8]. If a histogram with b buckets is considered,
each off-path message is b times bigger than that in the
Sum scheme, which makes the worst case node congestion
in this protocol to be OðbD log NÞ.

4.3. Our basic protocol

We now describe our basic protocol to compute and
verify an approximate Median. The basic protocol has
two phases: sampling phase, and histogram computation
and verification phase. Below we discuss these phases in
detail.

While collecting a sample of population values is highly
energy-efficient compared to collecting all the values, we
will later show that a sample can act as a good representa-
tive of the whole population. Also, we will show that only
the sample size determines the performance of our algo-
rithm, irrespective of the size of the population.

4.3.1. Sampling
In this phase, the BS collects a uniform sample of the

sensed values from the network. To do so, the BS broad-
casts the following message:

BS! � : hSAMPLE; seedi:

The sample request coming from the BS is broadcast in
a hop-by-hop fashion and the nodes arrange themselves in
a ring topology; nodes at the first hop from the BS belong
to the first ring and so on. A node X considers the previous
hop nodes as parents from which X has received the query
message. Note that in the sampling phase, we do not use a
tree topology, which is, however, used in the histogram

Fig. 2. Computing histogram boundaries: the histogram boundaries are
computed using the sample collected in the previous phase.

Fig. 3. Splitting the bucket: If the bucket j, which contains the Median has
more than 2�N elements, the bucket is split in order to meet �
approximation error bound.

S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462 1453
computation and verification phase. We assume that there
is a public hash function F : fID; seedg ! f0;1; . . . ; t � 1g,
where ID represents the node id, seed is the nonce broad-
cast during the query, and t is a positive integer which acts
as a design parameter as discussed later. Each node, say X,
hearing the query message applies the hash function
FðX; seedÞ. If the resulting value is 0, then its sensed value,
vX , is considered to be one element in the sample. In that
case, X computes MACðKX ;vXÞ and sends the message
VX ¼ ðX;vX ;MACðKX ; vXÞÞ to its parents. In addition to that,
if X has child nodes, X also forwards the sample values and
corresponding MACs received from the child nodes, say
VZ1 ; . . . ;VZc . The whole message from X looks as follows:

X ! ParentsðXÞ : hVX ;VZ1 ; . . . ;VZc i:

When the BS receives all these messages, it verifies the
corresponding MACs and outputs the list of values that
are legal items of the sample. Note that the seed is used in
order to have different samples in different runs. Basically,
the hash function is used to uniformly divide all of the nodes
among t groups; the nodes belonging to the first group (i.e.,
output of the hash function is 0) are considered to constitute
the sample. If the required sample size is S, one might set
t ¼ N=S. It is expected that this hash function uniformly
maps N elements into t groups. To increase the chance that
finally a sample of size no less than S will be collected, we
could increase the number of groups from t to kt, and output
the sample from more than k groups (e.g., kþ 1 groups).

4.3.2. Histogram computation and verification
Once the BS obtains the sample, it sorts the items in

ascending order. Then, the following steps are performed:
(i) computing histogram boundaries, (ii) computing and
verifying the buckets’ count, and (iii) estimating the
Median.

(i) Computing histogram boundaries: We consider the
number of buckets, b, as a parameter. In Section
5.2 we discuss how to choose this parameter. In this
step, we equally divide the sample items into b
buckets. We denote the buckets as Bi ¼ ½qi; qiþ1�;
0 6 i 6 b� 1, where q0 ¼ �1; qi ¼ EdSbei and qb ¼
þ1, as shown in Fig. 2. Ej represents the value of
jth item in the sample sorted according to the value,
with j varying from 1 to S.

(ii) Computing and verifying the buckets’ counts: To
compute the bucket counts, the BS and the sensor
nodes run the histogram verification protocol
described in Section 4.2. If there is no attack present
in the network, at the end of this step the BS knows
the number of nodes that belong to each bucket in
the histogram.However, an attacker node can cause
this verification to fail, and in that case, the protocol
terminates returning a message, ‘‘attack detected”.
We discuss an attack-resilient solution in Section 6.

(iii) Estimating the median: Assuming that the verifica-
tion in the previous step succeeds, we have the
bucket counts c0; . . . ; cb�1 for the corresponding
buckets. Our aim is now to find the bucket which
contains the Median. In particular, we find j such
that the following three constraints are satisfied:
c0 þ c1 þ . . .þ cj�1 < ðN þ 1Þ=2 ð2Þ
c0 þ c1 þ . . .þ cj P ðN þ 1Þ=2 ð3Þ
cj 6 2�N ð4Þ
We first find j such that the first two in-equalities are
satisfied. Then, we check if the above j also satisfies in-
equality (4). Note that if in-equality (4) is satisfied, then
it is guaranteed that either qj or qjþ1 is �N away from the
exact Median, which is reported as our final estimate. If
the in-equality (4) is not satisfied, we further split jth
bucket equally into b sub-buckets. The new boundaries
are updated as follows: q00 ¼ q0; q

0
1 ¼ qj; . . . ; q0b�1 ¼ qjþ1,

and q0b ¼ qb. Bucket splitting is illustrated in Fig. 3. We
iterate steps (ii) and (iii) until the in-equality (4) is
satisfied. During the above iteration, if we reach a point
where bucket j does not contain any sample items to split
further, we stop returning a message, ‘‘more sample items
to be collected”. We note that modifying the above
inequalities any other quantiles can be computed.

We observe that the above step can be readily extended
to compute any order-statistic other than the Median. In
particular, to compute the rth ð1 6 r 6 NÞ order-statistic
we replace the right-hand side of inequality (2) and (3) by r.

5. Security and performance analysis of our basic
protocol

5.1. Security analysis

A node X which is selected in the sample sends an
authentication code, MACðKX ;vXÞ, to the BS so that the BS
can authenticate the sensed value vX , where KX is the pair-
wise key of X shared with the BS. An attacker node that is
not legally selected by the hash function cannot inject a
false value in the sample without being detected.

Fig. 4. How far apart are two consecutive elements in the sample?

1454 S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462
Moreover, because multipath routing scheme is used in
the sampling phase, it is highly likely that we will be able
to collect a sample, even if a few compromised nodes do
not forward any messages. To establish the above observa-
tion, we consider a simplistic scenario. Let us assume that
there are w compromised nodes in total and they are ran-
domly distributed in the network. So, the probability of a
randomly selected node to be compromised is w=N, where
N is the total number of nodes. We also assume that each
node has at least h number of parents and the farthest node
is d hops away from the BS. We assume that unless all of
the parents of a node X are compromised, X’s message will
reach the next hop – the probability that this happens is
ð1� ðw=NÞhÞ. So, in the presence of the dropping attack
by the compromised nodes, the probability that a sample
item finally reaches the BS is at least ð1� ðw=NÞhÞd. As an
example, with N ¼ 1000;w ¼ 50; h ¼ 3, and d ¼ 15, this
probability is 0.998.

Like Chan et al.’s scheme, our histogram computation
protocol is able to detect the falsified sub-aggregate attack,
i.e., the attacker cannot modify the count of any bucket
in the histogram without being detected. So, given that
the verification succeeds, it is guaranteed that the final
estimate is an �-approximate Median.
Fig. 5. What is the chance that cpN elements will fall within pS sample
items, where c > 1 and 0 < p < 1?
5.2. Performance analysis

In this section, we analyze the communication com-
plexity of our basic protocol. In the first phase (i.e. during
the sampling phase), the worst case node congestion oc-
curs when a node (e.g. a node close to the BS) is required
to forward all of the S samples coming from the network.
So, the maximum node congestion in the sampling phase
is OðSÞ. The cost of the second phase, which computes
and verifies the histogram is OðbDlogNÞ, where b is the
number of buckets, D is the degree of the aggregation tree,
and N is number of nodes in the network. Note that our
protocol iterates the second phase until the required
approximation error bound is met. Our goal is to minimize
the total cost of all iterations.

The second phase goes to the next iteration if the bucket
bj in which the Median lies contains more than 2�N popu-
lation elements. We then further divide jth bucket into b
sub-buckets. We observe that further division is not possi-
ble if bucket j no longer contains a sample item, which is
bound to happen within at most logbS iterations. If bucket
j still contains more than 2�N population elements, we
cannot do anything further but collect more sample items.

To make an estimate of the sample size, S, so that we do
not need to perform an extra sampling phase in most of the
cases, we present the following lemma.

Lemma 5.1. The probability that more than pN population
elements lie between two consecutive items of a sorted
uniform sample of size S is /ðS; pÞ ¼ ð1� pÞS�1, where N is the
population size.

Proof. Let A and B be two consecutive items in the sample
after the sample items are sorted (as shown in Fig. 4). What
we want to compute is the probability to have more than
pN population elements between A and B. Once the sample
item, A, is chosen, we have other S� 1 population elements
remain to be chosen for the sample. To obtain the above
probability, none of these S� 1 sample items should be
chosen from the population interval which starts from A
and is of length pN (i.e., the interval includes pN population
elements). For each of these S� 1 sample items, the prob-
ability to be chosen not from that interval is ð1� pÞ. So, the
probability that none of the S� 1 items will be there is
ð1� pÞS�1. h

As an example, from Lemma 5.1, we see that
/ðS;2�Þ < 2:95� 10�5 for S P 100 and �P 0:05. This im-
plies that if the user requires �P 0:05 and we use b ¼ 10
buckets with S ¼ 100, we require at most logbðSÞ ¼ 2 itera-
tions to report the Median with probability ð1� 2:95�
10�5Þ � 1. It is interesting to note that this result does
not depend on the population size, N.

Now, to measure the trade-off between the number of
buckets, b, and the number of iterations, which together
determine the total cost of the algorithm, we present the
following lemma.

Lemma 5.2. The probability that more than cpNðc > 1;0 <
p < 1; cp < 1Þ population elements lie between the minimum
and the maximum of pS consecutive sample items of a sorted
sample of size S is

nðS; p; cÞ ¼
XpS

i¼0

S� 1
i

� �
ðcpÞið1� cpÞS�1�i ð5Þ

where N is the population size.

Proof. Let A and B be the maximum and the minimum
item among a subset of pS consecutive items in the sample
while the sample items are sorted, as shown in Fig. 5. So,
the expected number of population elements lying
between A and B is pN. We would like to compute the prob-
ability to have more than cpN population elements lying
between A and B, where c > 1. Once the sample item, A
is chosen, we have other S� 1 population elements remain
to be chosen for the sample. To obtain the above probabil-
ity, not more than pS items of these S� 1 sample items
should be chosen from the population interval which starts
from A and is of length cpN (i.e., the interval includes cpN

S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462 1455
population elements). For each of these S� 1 sample items,
the probability to be chosen from that interval is cp. So, the
probability that not more than pS items among the S� 1
items will be there is

XpS

i¼0

S� 1
i

� �
ðcpÞið1� cpÞS�1�i

: �
5.2.1. Number of buckets vs. number of iterations
If we use b ¼ c

2� buckets, which is of O 1
�

� �
, where c is a

constant greater than 1 and � is the required error bound,
then each bucket contains 2�

c S sample items during the first
iteration. So, the expected number of population elements
in one bucket is 2�

c N. In Lemma 5.2, putting p ¼ 2�
c , we can

compute the probability that more than c � 2�
c � N ¼ 2�N

population elements fall in a bucket. As Expression (5) is
a decreasing function of c, by choosing the appropriate c,
we can make the above probability close to zero. As an
example, for c ¼ 2, we observe that with sample size S such
that �S P 5, (i.e., each bucket contains no less than five
sample items in the first iteration) the above probability
is less than 0.02 for all �. That means, in this setting, our
protocol ends in one iteration in 98% cases. Finally, consid-
ering the cost of the histogram verification scheme, we see
that the total cost of all iterations per node, when b ¼ Oð1�Þ,
is Oð1�D log NÞ, where D is the degree of the aggregation tree.

On the other hand, if we use b ¼ Oð1Þbuckets and equally
divide the sample items in b buckets in each iteration, then,
after logb

c
2�

� �
iterations, each bucket will contain no more

than 2�
c S sample items. So, as shown above, with the appro-

priate c chosen, it is almost certain that our algorithm will
end at this point. Thus, considering the cost to compute
and verify the histogram in each iteration, the total cost of
all iterations, when b ¼ Oð1Þ, is O logb

1
� � b � D log N

� �
, where

D is the degree of the aggregation tree.

5.2.2. Betting on Median position
We observe that with the sorted sample items being

equally divided into b buckets, the probability of a bucket
containing the Median is not the same for all buckets.
The Median is more likely to occur with the buckets which
are in the middle of the sorted sample, compared to buck-
ets at either end. Here we establish the above observation
and exploit it to set a better trade-off between the number
of buckets and the number of iterations.

Essentially, rather not dividing the whole set of sorted
sample items into b buckets equally, we take a greedy ap-
proach – we divide a small fraction of sample items in the
middle into ðb� 2Þ buckets and place the rest of the sample
items at either end into one bucket each, as shown in Fig. 6.
Fig. 6. We divide a small fraction of sample items in the middle into
ðb� 2Þ buckets and place the rest of the sample items at either end in one
bucket each.
If we are lucky, after one iteration we find that the Median
lies in one of the smaller ðb� 2Þ buckets and thus our algo-
rithm converges faster with a given number of buckets. We
consider d;0 6 d 6 1 as a design parameter, which repre-
sents the probability that the Median actually lies in one
of the end buckets, i.e., with probability ð1� dÞ the Median
falls in one of the ðb� 2Þ buckets in the middle.

We can compute one positive integer r so that the Med-
ian lies within rth and s ¼ ðS� r þ 1Þth item in the sorted
sample with a high probability. In particular, for a given
d, r can be found using the formula given in [7], which is
as follows:

1� d ¼ 2�S
XS�r

i¼r

S

i

� �
: ð6Þ

Computing r using the above formula is closely related
to the sign test, so the table by MacKinnon [15] can be used.
We can also simplify the above formula considering that a
binomial distribution can be approximated to a normal
distribution. For S > 10, an approximate formula would
be r ¼ S

2� 1
2 ud

ffiffiffi
S
p

; where ud is the upper 1
2 d significance

point of a unit normal variate. Finally, we construct the his-
togram with b buckets by dividing the sample items which
are in the interval ½r; S� r þ 1� into ðb� 2Þ buckets and
adding one bucket each to both ends.

We observe that the larger the value we assign for d, the
faster we reduce the search space to find the Median (i.e.,
the number of sample items to consider in the next itera-
tion), if we are lucky. Of course, if we are unlucky, we need
to consider one of the larger end buckets in the next itera-
tion. So, the question becomes what is the optimum value
for d to use, so that our algorithm converges with the fast-
est speed on average. Our aim here is to minimize the aver-
age search space after one iteration. If the Median does lie
within one of the b� 2 central buckets, then the search
space for the next iteration is the same as the number of
sample items in one central bucket, which is ud

ffiffi
S
p

b�2 . This hap-
pens with probability 1� d; otherwise, we have to con-
sider one of the larger end buckets (i.e. the leftmost or
the rightmost one) in the next iteration. The width of such
an interval is S

2� 1
2 ud

ffiffiffi
S
p

. So, the optimization goal is to min-
imize the following expression, which represents the aver-
age search space after one iteration:

ð1� dÞ ud

ffiffiffi
S
p

b� 2

 !
þ d

S
2
� 1

2
ud

ffiffiffi
S
p� �

: ð7Þ

Given S and b, we can numerically determine the value
of d for which the above expression attains the minimum
value.

6. Attack-resilient Median computation

Although our basic protocol, discussed in Section 4.3,
detects falsified sub-aggregate attack, it fails to output an
estimate of the Median in the presence of the attack. To ad-
dress this problem, here we propose an extended approach
so that we can compute an approximate Median even in
the presence of a few compromised nodes.

We design the new approach based on the divide and
conquer principle. We divide the network into several

1456 S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462
groups of nodes, which introduces resilience against the
above attack. We run the verification algorithm individu-
ally for each group, which we call intra-group verification.
Basically, we localize the attacker nodes to specific groups,
i.e. we detect which groups are corrupted and which are
not. Even if a few groups are corrupted, we still compute
an estimate of the Median considering the valid groups.
We do not assume that the groups have similar data distri-
bution, which is the assumption exploited in other existing
approaches such as SDAP [29] or RANBAR [2].

We may employ different grouping techniques based on
node’s geographic location or node IDs. We may also use
grouping technique which is based on the nodes’ positions
on the aggregation tree. Once the group aggregate is com-
puted, the group leader send it directly to the BS; to avoid
having any node in the middle to drop group aggregates,
we use a multipath routing mechanism. In Section 6.1,
we describe the geographical grouping technique while
we give a sketch of ID-based grouping and dynamic group-
ing technique in Sections 6.2 and 6.3, respectively.

Also, we may exploit the robustness property of the
Median computation to determine the maximum amount
of error that can be injected by a given number of cor-
rupted nodes, even if we do not perform the intra-group
verification. In Section 6.4 we estimate this error while
we leave it to the network user to fix the tradeoff between
the error bound and the overhead due to intra-group
verification.

6.1. Geographical grouping

We assume that the BS has knowledge of the location of
the nodes and each node knows its own location. The net-
work is divided into several rectangular regions, where
each region is identified by a pair of geographical points.
The number of regions, g, and the location of the regions
are selected considering a few factors. As one criterion,
the regions might be chosen in such a way that an equal
number of nodes belong to each group – if a region has
lower node density, it is likely that it will be of larger geo-
graphical size. In addition, if the BS expects that a part of
Fig. 7. Geographical grouping: In each region the group leader, GLi , sends
the region aggregate to the BS by multiple paths.
the network is more likely to be under attack, it may prefer
to form smaller regions in that area to better localize the
attacker. Finally, The g rectangular regions are specified
by g pairs of diametrically opposite points, ðx1i; y1iÞ;
ðx2i; y2iÞ, where 1 6 i 6 g. For each group i, BS also selects
a node to be the group leader, GLi. An example of this
grouping is shown in Fig. 7.

Once the histogram boundaries are computed using the
collected sample (as in our basic protocol), the BS initiates
the histogram verification procedure. The BS sends a re-
quest to the corresponding group leaders with the neces-
sary information to identify the regions. Receiving the
request, a local aggregation tree is constructed which com-
prises of all of the nodes in the region with GLi as the root.
Then, the group histogram is computed locally and sent to
the BS. If compromised nodes are present in a few groups,
the BS will be able to identify the corrupted groups. The BS
accepts aggregates from only those regions, which passed
the verification. The BS may further split the region which
contains an attacker node and run the protocol again in the
sub-regions. Eventually, this splitting can be iterated until
the attacker node is identified or the percentage of verified
values satisfies the BS (e.g., when the verified groups corre-
spond to the 95% of the nodes). Below we discuss the at-
tack-resilient histogram computation and verification
algorithm.

6.1.1. Algorithm description
The nodes in each region locally perform the histogram

computation and verification protocol described in Section
4.2 with the group leader acting as an agent of the BS in the
corresponding group. To make the group leader GLi an eli-
gible agent of BS for group i, we need a few additional com-
munication between GLi and the BS. Below we focus on
these additional messages skipping the detailed descrip-
tion of rest of the protocol, which can be found in Section
4.2. The messages exchanged between GLi and the BS are
authenticated using their pairwise key. To improve
readability, we do not show these authentication fields in
the messages below.
6.1.1.1. Query dissemination. BS initiates the query by
sending to each group leader GLi via multiple paths the fol-
lowing message which contains the coordinates of the cor-
responding region:
BS) GLi : hðx1i; y1iÞ; ðx2i; y2iÞ;GLii:

In each region, the group leader, GLi, broadcasts the
received query message to its neighbor nodes, which
again broadcast the same message, and so on. It is a
scoped broadcast, i.e., if a node whose coordinate is out-
side of the corresponding region receives the message, it
simply drops the message. During the query broadcast, a
regional aggregation tree is formed with GLi as the root,
similarly as in the TAG [16] algorithm. The query mes-
sage also contains required lTESLA information (not
shown above) so that each node in the region can
authenticate the query.

After the query is disseminated, the nodes in each re-
gion locally perform the histogram computation and
verification protocol described in Section 4.2.

S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462 1457
6.1.1.2. Aggregation-commit phase. After the group leader
GLi receives the aggregated value from the nodes in group
i, it forwards the following message to the BS:

GLi) BS : hGLi; aggi; commitii;

where aggi represents the computed histogram of group i,
and commiti is the root of the commitment tree of region i.

6.1.1.3. Commitment-dissemination phase. The BS checks if
the number of nodes in the computed histogram of the
group is same as the total number of nodes in that group.
If yes, it sends to GLi the lTESLA authentication informa-
tion, lTðcommitiÞ. So, when GLi broadcasts commiti in
group i, each node can authenticate the message:

BS) GLi : hGLi;lTðcommitiÞi:
6.1.1.4. Result-checking phase. Each node checks if its value
is incorporated in the computed histogram. If yes, node X
sends a MAC over an ‘‘OK” message, MACðKX ;OKÞ, which
gets XOR-ed with other nodes’ similar messages on their
way to the group leader. Once GLi receives the compressed
OK message, say OKi, from the nodes in its group, it for-
wards this message to the BS via multiple paths:

GLi) BS : hGLi;OKii:

As the BS knows which nodes belong to which group, it
can verify OKi messages and hence can identify valid group
aggregates.
6.1.2. Security analysis
We recall from Section that the histogram computa-

tion and verification protocol, when executed on the
whole network, can detect if there is any falsified sub-
aggregate attack. That means, if a malicious node X fab-
ricates the histogram of its sub-tree or if X simply does
not participate in the protocol, the BS can detect the at-
tack and flags that the computed histogram is corrupted.
Our intra-group verification protocol is different from the
basic one only in the following aspects: (i) the histogram
of the whole network is considered as the aggregate of
the group histograms and each group histogram is com-
puted and verified individually, (ii) the group leader, GLi

exchanges a few messages with the BS, discussed in Sec-
tion 6.1.1, which enable GLi to play the role of BS in
group i.

The messages exchanged between GLi and the BS are
routed via multi-paths so that they reach the destination
even if an attacker node in the middle drops these mes-
sages. The communication between GLi and the BS is also
authenticated with their pairwise key. Moreover, GLi re-
ceives from the BS the lTesla authentication information
for the messages which are to be broadcast in the group,
e.g., the query message and the commiti message. So,
assuming a node X knows its location, X can securely deter-
mine to which group it belongs and the ID of the group lea-
der, and X can also authenticate the query and the commiti

message endorsed by the BS.
After the BS receives the group histogram from group i,

(i.e., the aggi message) the BS verifies if the number of
nodes reflected in the group histogram is same as the num-
ber of nodes in the group. Also, after receiving the OKi mes-
sage from group i, the BS verifies if this message correctly
represents, in compressed form, the OK message of all the
nodes in group i. The above two checks enable the BS to
correctly identify the corrupted groups, if any.

6.1.3. Performance analysis
On average, the number of nodes in one group is N0 ¼ N

g ,
where the network is divided into g groups. So, the worst
case node congestion inside one group for running the his-
togram verification algorithm is Oðb � D � log N0Þ, where b is
the number of buckets in the histogram and D is the num-
ber of neighbors of a node on the aggregation tree. Consid-
ering the analysis given in Section 5.2.1, with b ¼ O 1

�

� �
, the

worst case communication overhead per node is
O 1

� � D � log N0
� �

. In addition, a node needs to forward the
messages exchanged between the group leaders and the
BS, which is of OðgÞ communication overhead in the worst
case.

6.2. ID-based grouping

We now propose a different grouping technique which
is based on the node’s ID instead of the node’s location.
In this scheme, no location information is needed for the
nodes or for the BS. The main idea is that the BS divides
the set of node IDs into several subsets, and the nodes
belonging to a subset form an aggregation group. This
technique assumes that nodes in each subset are con-
nected. The limitation of this scheme is that reducing the
size of a subset increases the probability that these nodes
are not physically connected; so, in that case, we cannot
form a group which is connected by itself. We can address
the above problem by giving an overlay structure to a
group, where two nodes in a group can be connected via
multiple paths which may possibly go through a few
non-group nodes. An example of this grouping technique
is shown in Fig. 8. Except the grouping criteria, this scheme
works similarly as the geographical grouping scheme de-
scribed above. The level of security and the performance
of two schemes are similar.

6.3. Dynamic grouping

We may also design a dynamic grouping scheme which
does not use pre-defined groups. All the nodes in the net-
work basically perform the basic histogram verification
algorithm described in Section 4.3 with storing some addi-
tional information – each node X stores the aggregate of its
sub-tree and the compressed OK string which X has for-
warded to the parent node. We assume that the BS has
the knowledge of the topology of the aggregation tree. If
the BS successfully verifies the OK message, no further ac-
tion is taken. Otherwise, the BS identifies some nodes on
the aggregation tree and requests these nodes to send their
stored information (the aggregate and OK string). In this
way, the BS can localize the attacker node. Further verifica-
tion can be performed using different aggregation points.
Like geographical grouping, the refinement can be
achieved until the attacker node is identified or the

Fig. 8. ID-based grouping: the network is divided into several groups
based on node ID, e.g. the odd ID nodes [filled circles] form one group and
the even IDs [empty circles] form another. The aggregation is performed
separately in each group.

1458 S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462
percentage of verified values satisfies the BS. An example
of this grouping technique is shown in Fig. 9.

6.4. Error bound without intra-group verification

Assuming that there can be at most w compromised
nodes in the network, one might wish to estimate the error
bound in the final estimate of the Median if intra-group
verification is not performed in our attack-resilient
scheme. Then, one can decide if it is worth paying the over-
head for the intra-group verification to reduce the error. In
this section, we compute the error bound and leave it to
the user to set a tradeoff between the error and the energy
overhead. Note that here we basically exploit the fact that
one false value can deviate the final Median only by one
position.

Let us assume that the network is divided into g groups
which are of same size. To make the maximum deviation in
the Median estimate, the best strategy for the attacker will
be to compromise as many groups as possible – compro-
Fig. 9. Dynamic grouping: a single aggregation tree is constructed which
covers all of the network nodes. If the verification fails, the BS dynam-
ically selects a few sub-trees. The local aggregates are verified, where the
root of the sub-tree ðSTLiÞ acts as the group leader.
mising one node each in w groups. We assume that no in-
tra-group verification is performed and the group leader
sends the local histogram to the BS in a authenticated
way through multipath. The BS can verify these messages
received from the group leaders. Also, for each group histo-
gram, the BS verifies that no extra nodes are present in the
group. This guarantees that the maximum deviation in
Median that an attacker can inject by compromising one
group is N

g . So, with w compromised nodes, the worst case
relative error in the final estimate of the Median is
w N=g

N ¼ w
g .
7. Simulation results

In this section, we report on a simulation study that
examined the performance of our basic protocol discussed
in Section 4. Recall that, in the first phase, we collect a sam-
ple of sensed values from the network, and the perfor-
mance of the rest of the protocol depends on the quality
of this sample. The goal of the simulation experiments re-
ported below is to study the impact of the sample on the
overall performance of the Median computation protocol.
In particular, we verify the results we obtained via analysis,
in Section 5.2, about the inter-relationship among parame-
ters, such as error bound �, sample size S, and the number
of buckets b in the histogram.

Through simulation we do not evaluate the overhead of
in-network communications in our protocol. The analytical
results on the communication overhead of the sampling
phase and the histogram computation and verification
phase are discussed in Section 5.2.

7.1. Simulation environment

In our basic setup, the network size is 1000 nodes. We
also vary the network size to show that it does not have
a significant impact on our sampling-based approach. In
our simulation, the typical value we take for the � error
bound varies from 5% to 15%. Each node has one sensed va-
lue, while our goal is to compute an approximate Median.
We use the method of independent replications as our sim-
ulation methodology. Each simulation experiment was re-
peated no less than 1000 times with different seeds.

7.2. Results and discussion

Here, we discuss the results obtained in our simula-
tions. We observe that 95% confidence interval of all the
quantities on the following plots are within 5% of the re-
ported value.

7.2.1. What is the chance that one sampling phase is not
enough?

In Lemma 5.1, we analytically computes this probability
which we evaluate via simulation here. For each pair ðS; �Þ,
we collect a sample of size S and we compute the number
of time, s there are more than 2�N elements between the
two consecutive sample items containing the Median.
The total number of runs performed is 1,000,000. The
resulting /0ðS;2�Þ, which is the observed approximation

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35

%
 ti

m
es

 e
nd

in
g

in
 th

e
fir

st
 it

er
at

io
n

Number of buckets (b)

ε = 0.05
ε = 0.10
ε = 0.15

(a) % Times ending in one iteration

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35

Av
er

ag
e

nu
m

be
r o

f i
te

ra
tio

ns

Number of buckets (b)

ε = 0.05
ε = 0.10
ε = 0.15

(b) Average number of iterations

Fig. 11. The number of iterations vs. the number of buckets: if the
number of buckets is O 1

�

� �
, it is highly likely that our algorithm ends in

one iteration.

S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462 1459
of /ðS;2�Þ, is plotted in Fig. 10. It is worth noticing that the
value of /0ðS;2�Þ is less than 4� 10�5 for � > 0:05 when the
sample size S is more than 95. In fact, as expected, for a gi-
ven �, an increase of the value of S decreases /0ðS;2�Þ. Fi-
nally, we verify that /0ðS;2�Þ does not change
significantly (not shown in the figure) even if the popula-
tion size, N, is bigger.

7.2.2. Number of buckets vs. number of iterations
In Section 5.2, we analyzed the dependence of the num-

ber of iterations of our algorithm on the number of buckets
chosen, which we validate here via simulations. First, we
estimate the number of buckets required to end our proto-
col in one iteration in most cases. Fig. 11a illustrates the %
of cases our protocol ends in the first iteration. The figure
confirms our analysis that, for considering c ¼ 2, if we
use more than 1

� buckets (i.e., 20, 10, 7 buckets for
� ¼ 0:05;0:10;0:15, respectively), it is highly likely that
we need just one iteration. Finally, Fig. 11b shows the aver-
age number of iterations required using different number
of buckets, where � ¼ 0:05 and S ¼ 100. This validates
our analysis that the average number of iterations is
O logbð1�Þ
� �

when b buckets are used.

7.2.3. Betting on the Median position
In Section 5.2.2 we described an optimization based on

the observation that the Median lies with higher probabil-
ity in the buckets that are in the center of the sorted sam-
ple. We studied how different choices of d determines the
average number of iterations for a given number of buck-
ets. Fig. 12 shows the average number of iterations for dif-
ferent values of d while we use � ¼ 0:05 and S ¼ 100.

8. Conclusion

While researchers already addressed the problem of se-
curely computing aggregates such as Sum, Count, and
Average, to the best of our knowledge, there is no prior
work on secure computation of the Median. However, it
is widely considered that the Median is an important
aggregate. In this paper, we proposed a protocol to com-
pute an approximate Median and verify if it is falsified by
an attack. Once the protocol is executed, the base station
 0
 0.002
 0.004
 0.006
 0.008
 0.01
 0.012
 0.014

 40
 50

 60
 70

 80
 90

 100
 0.06 0.08 0.1 0.12 0.14

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

φ’(S,2ε)

S

ε

φ’(S,2ε)

Fig. 10. Computing the chance that we need to collect more sample
items: Given an �, we choose a sample size so that the probability that we
need to redo the sampling is close to zero.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.25 0.5 0.75 1

Av
er

ag
e

nu
m

be
r o

f i
te

ra
tio

ns

δ

b = 4
b = 7
b = 10
b = 20

Fig. 12. Proper choice of d reduces the number of iterations needed.

1460 S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462
either possesses a valid approximate Median or it has de-
tected an attack. Further, we proposed an attack-resilient
algorithm to compute the Median even in the presence of
a few compromised nodes. The evaluation via both analysis
and simulation shows that our approach is efficient and
secure.

Appendix A

Here, we briefly present Greenwald and Khanna’s
approximate Median algorithm and Chan et al.’s verifica-
tion algorithm, which we often refer in our paper.

A.1. Greenwald and Khanna’s approximate Median algorithm

This algorithm [11] is based on a summarization tech-
nique which represents a set of sensor readings by a quan-
tile summary. From a �-approximate quantile summary, we
can derive an arbitrary quantile of the data set satisfying
�-approximation error bound. In particular, an �-approxi-
mate quantile summary for a data set A is an ordered set
Q ¼ fa1;a2; . . . ;alg such that (i) a1 6 a2 . . . 6 al and ai 2 A
for 1 6 i 6 l, and (ii) rankðai þ 1Þ � rankðaiÞ < 2 � � � jAj.

Also, given two quantile summaries, Q1 and Q 2, which
represent two disjoint sets of sensed values, A1 and A2,
respectively, we can aggregate them into a single quantile
summary Q which represents all the values in A ¼ A1 [A2.
To aggregate two quantile summaries, we need two oper-
ations: combine operation and prune operation. The output
of the combine operation from the quantile summaries
Q1 and Q 2 is a sorted list, Q 0, which is the union of Q 1

and Q2. As a result, the size of Q 0 is the sum of the sizes
of the original summaries Q 1 and Q2. To keep the size of
the quantile summary within limits, we apply the prune
operation on Q 0 to determine a quantile summary Q of a
constant size, say z. The prune operation introduces an
additional error to that contained in the original summary.
In particular, if �0 is the error in Q 0, then the error in Q will
be �0 þ 1

2z.
The aggregation of individual quantile summaries is

performed over a tree structure with the BS as the root,
which is formed in the query broadcast phase. A leaf node
sends its quantile summary, which is simply its sensed va-
lue, to its parent. Each non-leaf node X first aggregates the
quantile summaries it receives from its child nodes using
the combine operation, and finally X applies one prune
operation to keep the size of the summary constant. Due
to the error introduced by the prune operation, the algo-
rithm uses a concept of delayed aggregation, where the
number of prune operations is kept within limit to satisfy
the error bound � in the final quantile summary. The
authors design the protocol in such a way that a single
sensed value experiences at most log N number of prune
operations on its way to the BS. If we set the quantile size
z ¼ log N

� , then the final error is bound to be � and the worst

case node congestion is O log2N
�

� �
.

A.2. Chan et al.’s verification algorithm

This scheme [3] is designed to compute and verify
the Sum aggregate. The main idea behind this scheme
is to move the verification responsibility from the
BS to individual nodes that participated in the aggrega-
tion. Each node verifies if its own value is accounted
for in the final aggregate. The algorithm consists of
four operations, each of which takes one epoch to
complete: (i) query dissemination, (ii) aggregation-com-
mit, (iii) commitment-dissemination, and (iv) result-
checking.

In the first epoch, the BS broadcasts an aggregation re-
quest. As the query message propagates through the net-
work, an aggregation tree with the BS at the root is
formed like in TAG algorithm [16].

During the aggregation-commit epoch, while the Sum is
computed over an aggregation tree, nodes also construct a
commitment structure similar to a Merkle hash tree [18] to
enable the verification in the next phase. While a leaf
node’s message to its parent node contains its sensed va-
lue, each internal node sends the sub-aggregate it com-
puted using the values received from its child nodes. In
addition, each internal node, X, creates a commitment (a
hash value) of the messages received from its child nodes.
Both the sub-aggregate and the commitment are then
passed to X’s parent, which acts as a summary of X’s sub-
tree. The fields in X’s message are < b;v ; �v ;h >, where b
is the number of nodes in X’s sub-tree, v is the local sum,
�v is the complement of the local sum (considering an
upper bound vbound for a sensed value), and h is an authen-
tication field. In particular, a leaf node X sets the fields in
its message as follows: b ¼ 1;v ¼ vX ; �v ¼ vbound � vX , and
h ¼ X. If an internal node X receives messages u1;u2; . . . ;

ut from its t child nodes, where ui ¼< bi;v i; �v i;hi >, then
X’s message, < b;v ; �v ;h >, is generated as follows:
b ¼

P
bi þ 1;v ¼

P
v i þ vX ;v ¼

P
�v i þ ðvbound � vXÞ, and

h ¼ H½bkvk�vku1ku2k . . . kut�, where H is a hash function.
Once the BS receives the final commitment, it verifies the
coherence of the final v ; �v with the number of nodes in
the network, N and the upper bound of sensed value,
vbound. In particular, the BS performs the following sanity
check: v þ �v ¼ vbound � N. If this check succeeds, the base
station initiates the next phase.

In the commitment-dissemination epoch, the final
commitment C is broadcast by the BS to the network. This
message is authenticated using the lTesla protocol [22].
The aim of the commitment-dissemination phase is to
let each single node know that its own value has been
considered in the final aggregate. To do so, each node X
should receive all of the off-path values up to the root
node relative to X’s position on the commitment tree.
These values, together with the X’s local commitment, al-
lows X to compute a final commitment C 0. Finally, node X
checks if C0 ¼ C. If the check succeeds, it means that X’s
local value, vX , has been included in the final Sum re-
ceived by the BS.

In the last epoch, each node X that succeeded in the
previous check sends an authentication code (MAC) up
the aggregation tree toward the BS. These MACs are
aggregated along the way with the XOR function to re-
duce the communication overhead. When the BS receives
the XOR of all of the MACs, it can verify if all nodes con-
firmed that their values have been considered in the final
aggregate.

S. Roy et al. / Ad Hoc Networks 7 (2009) 1448–1462 1461
The main cost of this protocol is due to the dissemina-
tion of the off-path values to individual nodes. The authors
observed that this overhead is minimized if the commit-
ment structure is balanced. They proposed to decouple
the commitment structure from the physical aggregation
tree, which enables the building of a balanced commit-
ment forest as an overlay on an unbalanced aggregation
tree. That results in the worst case node congestion in
the protocol being OðDlog2NÞ. To further reduce this over-
head, Frikken [8] modified the commitment structure,
which results in a total cost of OðD log NÞ.

Finally, the authors show how the Sum computation
protocol can be extended to compute the cardinality of a
subset of nodes (Count) in the network. In particular, to
count the elements in a given subset, we require each node
to contribute 1 to the Sum aggregate if it belongs to the
subset and to contribute 0 otherwise.

References

[1] D. Barbará, W. DuMouchel, C. Faloutsos, P.J. Haas, J.M. Hellerstein,
Y.E. Ioannidis, H.V. Jagadish, T. Johnson, R.T. Ng, V. Poosala, K.A. Ross,
K.C. Sevcik, The new jersey data reduction report, IEEE Data Eng. Bull.
20 (4) (1997) 3–45.

[2] L. Buttyán, P. Schaffer, I. Vajda, RANBAR: RANSAC-based resilient
aggregation in sensor networks, in: SASN’06, 2006, pp. 83–90.

[3] H. Chan, A. Perrig, D. Song, Secure hierarchical in-network
aggregation in sensor networks, in: CCS’06: Proceedings of the
13th ACM Conference on Computer and Communications Security,
2006, pp. 278–287.

[4] J. Considine, F. Li, G. Kollios, J. Byers, Approximate aggregation
techniques for sensor databases, in: ICDE’04: Proceedings of the 20th
International Conference on Data Engineering, 2004, pp. 449–460.

[5] G. Cormode, S. Muthukrishnan, An improved data stream summary:
the count-min sketch and its applications, in: LATIN’04: Proceedings
of the Latin American Theoretical Informatics, 2004, pp. 29–38.

[6] Crossbow Technology Inc., 2008. <http://www.xbow.com>.
[7] H.A. David, H.N. Nagaraja, Order-Statistics, third ed., John Wiley &

Sons Inc., 2003.
[8] K. Frikken, An efficient integrity-preserving scheme for hierarchical

sensor aggregation, in: WiSec’08: Proceedings of the First ACM
Conference on Wireless Network Security, 2008, pp. 68–76.

[9] W.F. Fung, D. Sun, J. Gehrke, Cougar: the network is the database, in:
SIGMOD’02: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of data, 2002, pp. 621–621.

[10] M. Greenwald, S. Khanna, Space-efficient online computation of
quantile summaries, in: SIGMOD’01: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data, 2001, pp.
58–66.

[11] M.B. Greenwald, S. Khanna, Power-conserving computation of order-
statistics over sensor networks, in: PODS’04: Proceedings of the 23rd
ACM SIGMOD–SIGACT–SIGART Symposium on Principles of
Database Systems, 2004, pp. 275–285.

[12] Habitat Monitoring on Great Duck Island. <http://
www.greatduckisland.net/>.

[13] R. Jain, I. Chlamtac, The P2 algorithm for dynamic calculation of
quantiles and histograms without storing observations, Commun.
ACM 28 (10) (1985) 1076–1085.

[14] James Reserve Microclimate and Video Remote Sensing. <http://
www.cens.ucla.edu>.

[15] W.J. MacKinnon, Table for both the sign test and distribution-free
confidence intervals of the median for sample sizes to 1000, J. Am.
Stat. Assoc. 59 (307) (1964) 935–956.

[16] S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, TAG: a tiny
aggregation service for ad-hoc sensor networks, in: OSDI’02:
Proceedings of the Fivth Symposium on Operating Systems Design
and Implementation, 2002, pp. 131–146.

[17] G.S. Manku, S. Rajagopalan, B.G. Lindsay, Approximate medians and
other quantiles in one pass and with limited memory, SIGMOD Rec.
27 (2) (1998) 426–435.

[18] R.C. Merkle, A digital signature based on a conventional encryption
function, in: CRYPTO’87: A Conference on the Theory and
Applications of Cryptographic Techniques on Advances in
Cryptology, 1988, pp. 369–378.

[19] J.I. Munro, M.S. Paterson, Selection and sorting with limited storage,
Theor. Comput. Sci. (12) (1980) 315–323.

[20] S. Nath, P.B. Gibbons, S. Seshan, Z.R. Anderson, Synopsis diffusion for
robust aggregation in sensor networks, in: SenSys’04: Proceedings of
the Second International Conference on Embedded Networked
Sensor Systems, 2004, pp. 250–262.

[21] B. Patt-Shamir, A note on efficient aggregate queries in sensor
networks, Theor. Comput. Sci. 370 (1-3) (2007) 254–264.

[22] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, SPINS: security
protocols for sensor networks, Wireless Networks 8 (5) (2002) 521–
534.

[23] V. Poosala, P.J. Haas, Y.E. Ioannidis, E.J. Shekita, Improved histograms
for selectivity estimation of range predicates, SIGMOD Rec. 25 (2)
(1996) 294–305.

[24] S. Roy, M. Conti, S. Setia, S. Jajodia, Securely computing an
approximate median in wireless sensor networks, in:
Proceedings of the Fourth International Conference on Security
and Privacy in Communication Networks (SecureComm 2008),
2008, pp. 1–10.

[25] S. Roy, S. Setia, S. Jajodia, Attack-resilient hierarchical data
aggregation in sensor networks, in: SASN’06: Proceedings of the
Fourth ACM Workshop on Security of Ad-hoc and Sensor Networks,
2006, pp. 71–82.

[26] N. Shrivastava, C. Buragohain, D. Agrawal, S. Suri, Medians
and beyond: new aggregation techniques for sensor networks,
in: SenSys’04: Proceedings of the Second International
Conference on Embedded Networked Sensor Systems, 2004,
pp. 239–249.

[27] The Firebug Project. <http://firebug.sourceforge.net>.
[28] D. Wagner, Resilient aggregation in sensor networks, in: SASN’04:

Proceedings of the Second ACM Workshop on Security of Ad-hoc and
Sensor Networks, 2004, pp. 78–87.

[29] Y. Yang, X. Wang, S. Zhu, G. Cao, SDAP: a secure hop-by-
hop data aggregation protocol for sensor networks, in:
MobiHoc’06: Proceedings of the Seventh ACM International
Symposium on Mobile Ad-hoc Networking and Computing,
2006, pp. 356–367.

[30] S. Zhu, S. Setia, S. Jajodia, Leap: efficient security mechanisms for
large-scale distributed sensor networks, in: CCS’03: Proceedings of
the 10th ACM Conference on Computer and Communications
Security, 2003, pp. 62–72.

Sankardas Roy was born in India in 1974. He
received his Master of Technology in Com-
puter Science from the Indian Statistical
Institute, Kolkata, India, in 2001. In the fall of
2002, he began studies in the George Mason
University, Virginia, USA to pursue a Ph.D. and
graduated in 2008. His research interests
include sensor network security, ad hoc net-
work security, and network security in
general.
Mauro Conti received in 2005 the Laurea
Degree (equivalent do MS) in Computer Sci-
ence from the University of Rome ‘‘La Sapi-
enza” - Italy. He received in 2009 the Ph.D. in
Computer Science from the same University.
His current research interest is on security
and privacy for wireless resource-constrained
mobile devices (Sensors and RFID).

http://www.xbow.com
http://www.greatduckisland.net/
http://www.greatduckisland.net/
http://www.cens.ucla.edu
http://www.cens.ucla.edu
http://firebug.sourceforge.net

tworks 7 (2009) 1448–1462
Sanjeev Setia is an Associate Professor in the
Computer Science Department at George

Mason University. He received his Ph.D. from
the University of Maryland, College Park in
1993. His research interests are in ad hoc and
sensor networks, network security and per-
formance evaluation of computer systems. In
recent years, he has worked extensively on
security mechanisms and protocols for ad hoc
and wireless sensor networks. He was a
cofounder of the ACM Workshop on Security
in Ad hoc and Sensor Networks (SASN) and

served as its co-organizer in 2003 and 2004. His research has been funded
by NSF, NASA and DARPA.

1462 S. Roy et al. / Ad Hoc Ne
Sushil Jajodia is University Professor, BDM
International Professor of Information Tech-
nology, and the director of Center for Secure
Information Systems at the George Mason
University, Fairfax, Virginia. He has authored
six books, edited thirty books and conference
proceedings, and published more than 350
technical papers in the refereed journals and
conference proceedings. He is the founding
editor-in-chief of the Journal of Computer
Security and the consulting editor of the
Springer International Series on Advances in

Information Security. The URL for his web page is http://csis.gmu.edu/
faculty/jajodia.html.

http://csis.gmu.edu/faculty/jajodia.html
http://csis.gmu.edu/faculty/jajodia.html

	Secure median computation in wireless sensor networks
	Introduction
	Organization

	Related work
	Assumptions and problem description
	Network assumptions
	Security model
	Problem description
	Notation

	Computing and verifying an approximate median
	GC approach
	A histogram verification algorithm
	Our basic protocol
	Sampling
	Histogram computation and verification

	Security and performance analysis of our basic protocol
	Security analysis
	Performance analysis
	Number of buckets vs. number of iterations
	Betting on Median position

	Attack-resilient Median computation
	Geographical grouping
	Algorithm description
	Query dissemination
	Aggregation-commit phase
	Commitment-dissemination phase
	Result-checking phase

	Security analysis
	Performance analysis

	ID-based grouping
	Dynamic grouping
	Error bound without intra-group verification

	Simulation results
	Simulation environment
	Results and discussion
	What is the chance that one sampling phase is not enough?
	Number of buckets vs. number of iterations
	Betting on the Median position

	Conclusion
	Appendix A
	Greenwald and Khanna’s approximate Median algorithm
	Chan et?al.’s verification algorithm

	References

